148 research outputs found

    Software Pauli Tracking for Quantum Computation

    Full text link
    The realisation of large-scale quantum computing is no longer simply a hardware question. The rapid development of quantum technology has resulted in dozens of control and programming problems that should be directed towards the classical computer science and engineering community. One such problem is known as Pauli tracking. Methods for implementing quantum algorithms that are compatible with crucial error correction technology utilise extensive quantum teleportation protocols. These protocols are intrinsically probabilistic and result in correction operators that occur as byproducts of teleportation. These byproduct operators do not need to be corrected in the quantum hardware itself. Instead, byproduct operators are tracked through the circuit and output results reinterpreted. This tracking is routinely ignored in quantum information as it is assumed that tracking algorithms will eventually be developed. In this work we help fill this gap and present an algorithm for tracking byproduct operators through a quantum computation. We formulate this work based on quantum gate sets that are compatible with all major forms of quantum error correction and demonstrate the completeness of the algorithm.Comment: 5 Pages, 1 figure, Accepted for Design, Automation and Test In Europe (DATE'2014

    Synthesis of Topological Quantum Circuits

    Full text link
    Topological quantum computing has recently proven itself to be a very powerful model when considering large- scale, fully error corrected quantum architectures. In addition to its robust nature under hardware errors, it is a software driven method of error corrected computation, with the hardware responsible for only creating a generic quantum resource (the topological lattice). Computation in this scheme is achieved by the geometric manipulation of holes (defects) within the lattice. Interactions between logical qubits (quantum gate operations) are implemented by using particular arrangements of the defects, such as braids and junctions. We demonstrate that junction-based topological quantum gates allow highly regular and structured implementation of large CNOT (controlled-not) gate networks, which ultimately form the basis of the error corrected primitives that must be used for an error corrected algorithm. We present a number of heuristics to optimise the area of the resulting structures and therefore the number of the required hardware resources.Comment: 7 Pages, 10 Figures, 1 Tabl

    Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array

    Full text link
    In this paper, we explore the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds for scalable, fault-tolerant quantum computation. To circumvent the traditionally low thresholds of small fixed-width arrays, we deliberately engineer an error bias at the lowest level of encoding using the surface code. We then address this engineered bias at a higher level of encoding using a lattice-surgery surface code bus that exploits this bias, or a repetition code to make logical qubits with unbiased errors out of biased surface code qubits. Arbitrarily low error rates can then be reached by further concatenating with other codes, such as Steane [[7,1,3]] code and the [[15,7,3]] CSS code. This enables a scalable fixed-width quantum computing architecture on a square qubit lattice that is only 19 qubits wide, given physical qubits with an error rate of 8.0×10−48.0\times 10^{-4}. This potentially eases engineering issues in systems with fine qubit pitches, such as quantum dots in silicon or gallium arsenide.Comment: 34 pages, 19 figure

    Compilation of algorithm-specific graph states for quantum circuits

    Full text link
    We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages, such as Cirq and Q#. The computation can then be implemented using a series of non-Pauli measurements on this graph state. By compiling the graph state directly instead of starting with a standard lattice cluster state and preparing it over the course of the computation, we are able to better understand the resource costs involved and eliminate wasteful Pauli measurements on the actual quantum device. Access to this algorithm-specific graph state also allows for optimisation over locally equivalent graph states to implement the same quantum circuit. The compiler presented here finds ready application in measurement based quantum computing, NISQ devices and logical level compilation for fault tolereant implementations
    • …
    corecore