368 research outputs found

    Flux Limiter Methods in 3D Numerical Relativity

    Get PDF
    New numerical methods have been applied in relativity to obtain a numerical evolution of Einstein equations much more robust and stable. Starting from 3+1 formalism and with the evolution equations written as a FOFCH (first-order flux conservative hyperbolic) system, advanced numerical methods from CFD (Computational Fluid Dynamics) have been successfully applied. A flux limiter mechanism has been implemented in order to deal with steep gradients like the ones usually associated with black hole spacetimes. As a test bed, the method has been applied to 3D metrics describing propagation of nonlinear gauge waves. Results are compared with the ones obtained with standard methods, showing a great increase in both robustness and stability of the numerical algorithm.Comment: 9 pages, 5 figures. to be published in the Procedings of ERE0

    Boosting jet power in black hole spacetimes

    Full text link
    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.Comment: 7 pages, 5 figure

    Orbital Dynamics of Binary Boson Star Systems

    Full text link
    We extend our previous studies of head-on collisions of boson stars by considering orbiting binary boson stars. We concentrate on equal mass binaries and study the dynamical behavior of boson/boson and boson/antiboson pairs. We examine the gravitational wave output of these binaries and compare with other compact binaries. Such a comparison lets us probe the apparent simplicity observed in gravitational waves produced by black hole binary systems. In our system of interest however, there is an additional internal freedom which plays a significant role in the system's dynamics, namely the phase of each star. Our evolutions show rather simple behavior at early times, but large differences occur at late times for the various initial configurations.Comment: 10 pages, 14 figure
    corecore