92 research outputs found

    Bremsstrahlung radiation from the interaction of short laser pulses with dielectrics

    Full text link
    An intense, short laser pulse incident on a transparent dielectric can excite electrons from valence to the conduction band. As these electrons undergo scattering, both from phonons and ions, they emit bremsstrahlung radiation. Here we present a theory of bremsstrahlung emission appropriate for laser pulse-dielectric interactions. Simulations of the interaction, incorporating this theory, illustrate characteristics of the radiation (power, energy and spectra) for arbitrary ratios of electron collision frequency to radiation frequency. The conversion efficiency of laser pulse energy into bremsstrahlung radiation depends strongly on both the intensity and duration of the pulse, saturating at values of about 10e-5. Depending on whether the intensity is above or below the damage threshold of the material, the emission can originate either from the surface or the bulk of the dielectric respectively. The bremsstrahlung emission may provide a broadband light source for diagnostics

    Enhanced backscatter of optical beams reflected in turbulent air

    Full text link
    Optical beams propagating through air acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Using a combination of lab-scale experiments and simulations, we investigate the EBS of optical beams reflected from corner cubes and rough surfaces, and identify the regimes in which EBS is most distinctly observed.Comment: 10 pages, 8 figure
    • …
    corecore