36 research outputs found

    Graph Embedding Techniques, Applications, and Performance: A Survey

    Full text link
    Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic.Comment: Submitted to Knowledge Based Systems for revie

    Deep Neural Networks for Optimal Team Composition

    Full text link
    Cooperation is a fundamental social mechanism, whose effects on human performance have been investigated in several environments. Online games are modern-days natural settings in which cooperation strongly affects human behavior. Every day, millions of players connect and play together in team-based games: the patterns of cooperation can either foster or hinder individual skill learning and performance. This work has three goals: (i) identifying teammates' influence on players' performance in the short and long term, (ii) designing a computational framework to recommend teammates to improve players' performance, and (iii) setting to demonstrate that such improvements can be predicted via deep learning. We leverage a large dataset from Dota 2, a popular Multiplayer Online Battle Arena game. We generate a directed co-play network, whose links' weights depict the effect of teammates on players' performance. Specifically, we propose a measure of network influence that captures skill transfer from player to player over time. We then use such framing to design a recommendation system to suggest new teammates based on a modified deep neural autoencoder and we demonstrate its state-of-the-art recommendation performance. We finally provide insights into skill transfer effects: our experimental results demonstrate that such dynamics can be predicted using deep neural networks

    dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning

    Full text link
    Learning graph representations is a fundamental task aimed at capturing various properties of graphs in vector space. The most recent methods learn such representations for static networks. However, real world networks evolve over time and have varying dynamics. Capturing such evolution is key to predicting the properties of unseen networks. To understand how the network dynamics affect the prediction performance, we propose an embedding approach which learns the structure of evolution in dynamic graphs and can predict unseen links with higher precision. Our model, dyngraph2vec, learns the temporal transitions in the network using a deep architecture composed of dense and recurrent layers. We motivate the need of capturing dynamics for prediction on a toy data set created using stochastic block models. We then demonstrate the efficacy of dyngraph2vec over existing state-of-the-art methods on two real world data sets. We observe that learning dynamics can improve the quality of embedding and yield better performance in link prediction

    Capturing Edge Attributes via Network Embedding

    Full text link
    Network embedding, which aims to learn low-dimensional representations of nodes, has been used for various graph related tasks including visualization, link prediction and node classification. Most existing embedding methods rely solely on network structure. However, in practice we often have auxiliary information about the nodes and/or their interactions, e.g., content of scientific papers in co-authorship networks, or topics of communication in Twitter mention networks. Here we propose a novel embedding method that uses both network structure and edge attributes to learn better network representations. Our method jointly minimizes the reconstruction error for higher-order node neighborhood, social roles and edge attributes using a deep architecture that can adequately capture highly non-linear interactions. We demonstrate the efficacy of our model over existing state-of-the-art methods on a variety of real-world networks including collaboration networks, and social networks. We also observe that using edge attributes to inform network embedding yields better performance in downstream tasks such as link prediction and node classification

    Hierarchical Class-Based Curriculum Loss

    Full text link
    Classification algorithms in machine learning often assume a flat label space. However, most real world data have dependencies between the labels, which can often be captured by using a hierarchy. Utilizing this relation can help develop a model capable of satisfying the dependencies and improving model accuracy and interpretability. Further, as different levels in the hierarchy correspond to different granularities, penalizing each label equally can be detrimental to model learning. In this paper, we propose a loss function, hierarchical curriculum loss, with two properties: (i) satisfy hierarchical constraints present in the label space, and (ii) provide non-uniform weights to labels based on their levels in the hierarchy, learned implicitly by the training paradigm. We theoretically show that the proposed loss function is a tighter bound of 0-1 loss compared to any other loss satisfying the hierarchical constraints. We test our loss function on real world image data sets, and show that it significantly substantially outperforms multiple baselines

    DynamicGEM: A Library for Dynamic Graph Embedding Methods

    Full text link
    DynamicGEM is an open-source Python library for learning node representations of dynamic graphs. It consists of state-of-the-art algorithms for defining embeddings of nodes whose connections evolve over time. The library also contains the evaluation framework for four downstream tasks on the network: graph reconstruction, static and temporal link prediction, node classification, and temporal visualization. We have implemented various metrics to evaluate the state-of-the-art methods, and examples of evolving networks from various domains. We have easy-to-use functions to call and evaluate the methods and have extensive usage documentation. Furthermore, DynamicGEM provides a template to add new algorithms with ease to facilitate further research on the topic

    Tracking Temporal Evolution of Graphs using Non-Timestamped Data

    Full text link
    Datasets to study the temporal evolution of graphs are scarce. To encourage the research of novel dynamic graph learning algorithms we introduce YoutubeGraph-Dyn (available at https://github.com/palash1992/YoutubeGraph-Dyn), an evolving graph dataset generated from YouTube real-world interactions. YoutubeGraph-Dyn provides intra-day time granularity (with 416 snapshots taken every 6 hours for a period of 104 days), multi-modal relationships that capture different aspects of the data, multiple attributes including timestamped, non-timestamped, word embeddings, and integers. Our data collection methodology emphasizes the creation of time evolving graphs from non-timestamped data. In this paper, we provide various graph statistics of YoutubeGraph-Dyn and test state-of-the-art graph clustering algorithms to detect community migration, and time series analysis and recurrent neural network algorithms to forecast non-timestamped data

    Cross-modal Learning for Multi-modal Video Categorization

    Full text link
    Multi-modal machine learning (ML) models can process data in multiple modalities (e.g., video, audio, text) and are useful for video content analysis in a variety of problems (e.g., object detection, scene understanding, activity recognition). In this paper, we focus on the problem of video categorization using a multi-modal ML technique. In particular, we have developed a novel multi-modal ML approach that we call "cross-modal learning", where one modality influences another but only when there is correlation between the modalities -- for that, we first train a correlation tower that guides the main multi-modal video categorization tower in the model. We show how this cross-modal principle can be applied to different types of models (e.g., RNN, Transformer, NetVLAD), and demonstrate through experiments how our proposed multi-modal video categorization models with cross-modal learning out-perform strong state-of-the-art baseline models

    DynGEM: Deep Embedding Method for Dynamic Graphs

    Full text link
    Embedding large graphs in low dimensional spaces has recently attracted significant interest due to its wide applications such as graph visualization, link prediction and node classification. Existing methods focus on computing the embedding for static graphs. However, many graphs in practical applications are dynamic and evolve constantly over time. Naively applying existing embedding algorithms to each snapshot of dynamic graphs independently usually leads to unsatisfactory performance in terms of stability, flexibility and efficiency. In this work, we present an efficient algorithm DynGEM based on recent advances in deep autoencoders for graph embeddings, to address this problem. The major advantages of DynGEM include: (1) the embedding is stable over time, (2) it can handle growing dynamic graphs, and (3) it has better running time than using static embedding methods on each snapshot of a dynamic graph. We test DynGEM on a variety of tasks including graph visualization, graph reconstruction, link prediction and anomaly detection (on both synthetic and real datasets). Experimental results demonstrate the superior stability and scalability of our approach.Comment: 3rd International Workshop on Representation Learning for Graphs (ReLiG), IJCAI 201

    Exploiting Temporal Coherence for Multi-modal Video Categorization

    Full text link
    Multimodal ML models can process data in multiple modalities (e.g., video, images, audio, text) and are useful for video content analysis in a variety of problems (e.g., object detection, scene understanding). In this paper, we focus on the problem of video categorization by using a multimodal approach. We have developed a novel temporal coherence-based regularization approach, which applies to different types of models (e.g., RNN, NetVLAD, Transformer). We demonstrate through experiments how our proposed multimodal video categorization models with temporal coherence out-perform strong state-of-the-art baseline models
    corecore