20 research outputs found
Microbubble Surface Modes
We have investigated surface vibrations generated by ultrasound excitation of individual unencapsulated micron-sized bubbles. In addition, we present surface modes (n=2 and 3) observed for phospholipid-coated ultrasound contrast agents excited through excitation of radial modes at frequencies between 1 and 4 MHz. Even higher modes of vibration (up to mode 5) are observed for coated microbubbles at insonation frequencies of 10 and 19 MHz. The potential relevance of surface modes for medical ultrasound is discussed, including the possible implications for current theoretical models of ultrasound contrast agents
Emboli detection using a new transducer design
We have presented, in a previous study, a new approach to detect, characterize and estimate the size of gaseous emboli, based on the nonlinear behavior of gaseous bubbles. In this study, a specific transducer design has been developed to be used for such a purpose. It is composed of two separate transmitting and receiving capabilities. The transmit part, consisting of a lead zirconate-titanate (PZT) material, emits at a frequency of 500 kHz and could generate pressures up to 410 kPa. On the top of the transmit surface, a thin polyvinylidene difluoride (PVDF) layer is glued and used for receiving frequencies from 250 kHz (f0/2) up to 2.5 MHz (5 f0). To evaluate this new design, ultrasonic measurements were carried out with gas bubbles with diameters ranging from 10 ¿m up to 90 ¿m and solid particles between 350 ¿m and 550 ¿m. The experimental results confirmed our previous findings: gaseous emboli with a diameter close to the resonance size scatter significantly at higher harmonic components (from the second harmonic up to the fifth), and bubbles with a diameter around twice the resonance size produce a subharmonic and/or an ultraharmonic component. Meanwhile, solid particles and other bubble sizes behave only linearly and their scattered spectrum appeared without any harmonics. The study demonstrates the utility of this approach in using a single transducer to detect and characterize selective gaseous emboli from other particles using their nonlinear behavior
Sonopermeabilization: therapeutic alternative with ultrasound and microbubbles
Future applications of ultrasound and microbubbles extend to more than imaging applications. Over the last few years, it was reported that sonographic contrast agent effects under ultrasound, modulate transiently cell membrane permeability. This process, named sonoporation and classified as a new physical method to transfer genes or drugs, consists of using a physical energy source to modulate membrane integrity. The possibility to transfer therapeutic genes would be a new tool for gene therapy and could constitute an alternative method. After in vitro and in vivo studies presentation, the therapeutic potential of sonoporation will be investigated in this paper