4 research outputs found

    CYTOPROTECTIVE ACTIVITY OF NEWLY SYNTHESIZED 3-(ARYLMETHYLAMINO)-6-METHYL-4-PHENYLPYRIDIN-2(1H)-ONES DERIVATIVES

    No full text
    Currently, studies are being conducted on the possible role of the cytoprotective effect of biologically active substances in conditions of cerebral hypoxia or cardiomyopathies. At the same time, oxidative stress is considered one of the important mechanisms of cellular cytotoxicity and a target for the action of cytoprotectors. The aim of this study is to search for derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones. The probability of cytoprotective action was assessed by measuring cell viability using two tests (with neutral red dye and MTT test). It was found that some derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones under the conditions of our experiment had a pronounced cytoprotective activity, providing better cell survival in vitro, including the MTT test and conditions of blood hyperviscosity. To correlate the obtained results in vitro, molecular docking of the synthesized derivatives was also carried out. The standard drug omeprazole (co-crystallized with the enzyme) was used as a standard. It was shown that all synthesized derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones had higher affinity for the selected protein than the standard gastro-cytoprotector omeprazole. The studied derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones also fully satisfy Lipinski’s rule of five (RO5), which increases their chances for possible use as orally active drugs with good absorption ability and moderate lipophilicity. Thus, the results obtained make it possible to evaluate derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones as having a relatively high cytoprotective potential

    Magnetic, Optical, and Thermic Properties of SrLnCuSe<sub>3</sub> (Ln = Dy, Ho, Er, Tm) Compounds

    No full text
    SrLnCuSe3 (Ln = Dy, Ho, Er, Tm) compounds crystallize in the Pnma and Cmcm orthorhombic space group and belong to the Eu2CuS3 and KCuZrS3 structural type, respectively. According to a single-crystal XRD study, the SrTmCuSe3 unit cell parameters are a = 4.0631 (4), b = 13.4544 (14), c = 10.4430 (10) Å, and V = 570.88 (10) Å3. All the studied SrLnCuSe3 samples in the temperature range of 1.77–300 K demonstrate paramagnetic behavior without any features pointing to magnetic ordering. The measured Curie constants coincide with the values expected for Ln3+ ions with good accuracy, which confirms the stoichiometric composition of the samples and the non-magnetic state of the copper ions, Cu1+ (S = 0). The conducted optical absorption study showed that the polycrystalline SrLnCuSe3 (Ln = Dy, Ho, Er, Tm) samples are semiconductors with a direct bandgap ranging from 2.14 eV to 2.31 eV. Two indirect bandgaps were revealed and explained by the presence of optical transitions to highly dispersive subbands in the conduction band. The compounds demonstrate two reversible phase transitions α⇆β, β⇆γ and an incongruent melting at 1606 K (Dy), 1584 K (Ho), 1634 K (Er), and 1620 K (Tm) associated with the formation of solid solutions of SrSe, Cu2-XSe, and Ln2Se3 binary compounds

    Epigenetic Upregulation of lncRNAs at 13q14.3 in Leukemia Is Linked to the In Cis Downregulation of a Gene Cluster That Targets NF-kB

    No full text
    corecore