915 research outputs found
Geomagnetic activity forcing of the Northern Annular Mode via the stratosphere
We consider various aspects of the link between solar-modulated geomagnetic activity and the Northern Annular Mode (NAM). Our results indicate that the geomagnetic forcing of atmospheric circulation in the Northern Hemisphere is temporally and seasonally restricted, modulated by the Quasi-Biennial Oscillation (QBO), and reliant on stratosphere-troposphere coupling. When the data are restricted to January values after 1965, for years in which the January QBO is eastwards, the correlation coefficient between the geomagnetic AA index and the NAM is 0.85. These results can account for many of the enigmatic features of Northern Hemisphere circulation.<br><br> <b>Key words.</b> Meterology and atmospheric dynamics (general circulation, climatology
Role of glutathionylation in infection and inflammation
Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and
glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by dierent
cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most
studies on the identification of glutathionylated proteins have focused on cellular proteins, including
proteins involved in host response to infection, but there is a growing number of reports showing
that microbial proteins also undergo glutathionylation, with modification of their characteristics and
functions. In the present review, we highlight the signaling role of GSH through glutathionylation,
particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host
GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the
biological role of the process in microbial infections and related host responses
EFFICIENT PROPAGATION OF ARCHETYPE JC POLYOMAVIRUS IN COS-7 CELLS: EVALUATION OF REARRANGEMENTS WITHIN NCCR STRUCTURAL ORGANIZATION DURING TRANSFECTION.
John Cunningham virus (JCPyV) is an ubiqui-tous human pathogen that causes disease in immunocom-promised patients. The JCPyV genome is composed of an early region and a late region, which are physically sepa-rated by the non-coding control region (NCCR). The DNA sequence of the NCCR distinguishes two forms of JCPyV, the designated archetype and the prototype, which resulted from a rearrangement of the archetype sequence. To date, the cell culture systems for propagating JCPyV archetype have been very limited in their availability and robust-ness. Prior to this study, it was demonstrated that JCPyV archetype DNA replicates in COS-7 simian kidney cells expressing SV40 TAg and COS-7 cells expressing HIV-1 Tat. Based on these observations, the present study was conducted to reproduce an in vitro model in COS-7 cells transfected with the JCPyV archetype strain in order to study JCPyV DNA replication and analyze NCCR rear-rangements during the viral life cycle. The efficiency of JCPyV replication was evaluated by quantitative PCR (Q-PCR) and by hemagglutination (HA) assay after trans-fection. In parallel, sequence analysis of JCPyV NCCR was performed. JCPyV efficiently replicated in kidney-derived COS-7 cells, as demonstrated by a progressive increase in viral load and virion particle production after transfection. The archetypal structure of NCCR was maintained during the viral cycle, but two characteristic point mutations were detected 28 days after transfection. This model is a useful tool for analyzing NCCR rearrangements during in vitroreplication in cells that are sites of viral persistence, such as tubular epithelial cells of the kidne
Glutathione increase by the n-butanoyl glutathione derivative (GSH-C4) inhibits viral replication and induces a predominant Th1 immune profile in old mice infected with influenza virus
During aging, glutathione (GSH) content declines and the immune system undergoes a
deficiency in the induction of Th1 response. Reduced secretion of Th1 cytokines, which is
associated with GSH depletion, could weaken the host defenses against viral infections.
We first evaluated the concentration of GSH and cysteine in organs of old mice; then, the
effect of the administration of the N-butanoyl GSH derivative (GSH-C4) on the response of
aged mice infected with influenza A PR8/H1N1 virus was studied through the determination
of GSH concentration in organs, lung viral titer, IgA and IgG1/IgG2a production and
Th1/Th2 cytokine profile.
Old mice had lower GSH than young mice in organs. Also the gene expression of
endoplasmic reticulum (ER) stress markers involved in GSH metabolism and folding of
proteins, i.e. Nrf2 and PDI, was reduced. Following infection, GSH content remained low
and neither infection nor GSH-C4 treatment affected Nrf2 expression. In contrast, PDI
expression was upregulated during infection and appeared counterbalanced by GSH-C4.
Moreover, the treatment with GSH-C4 increased GSH content in organs, reduced viral
replication and induced a predominant Th1 response.
In conclusion, GSH-C4 treatment could be used in the elderly to contrast influenza virus
infection by inducing immune response, in particular the Th1 profile
An evaluation of airborne laser scan data for coalmine subsidence mapping
The accurate mapping of coalmine subsidence is necessary for the continued management of potential subsidence impacts. The use of airborne laser scan (ALS) data for subsidence mapping provides an alternative method to traditional ground-based approaches that affords increased accessibility and complete spatial coverage. This paper evaluates the suitability and potential of ALS data for subsidence mapping, primarily through the examination of two pre-mining surveys in a rugged, densely vegetated study site. Data quality, in terms of mean point spacing and coverage, is evaluated, along with the impact of interpolation methods, resolution, and terrain. It was assumed that minimal surface height changes occurred between the two pre-mining surfaces. Therefore any height changes between digital elevation models of the two ALS surveys were interpreted as errors associated with the use of ALS data for subsidence mapping. A mean absolute error of 0.23 m was observed, though this error may be exaggerated by the presence of a systematic 0.15 m offset between the two surveys. Very large (several metres) errors occur in areas of steep or dynamic terrain, such as along cliff lines and watercourses. Despite these errors, preliminary subsidence mapping, performed using a third, post-mining dataset, clearly demonstrates the potential benefits of ALS data for subsidence mapping, as well as some potential limitations and the need for further careful assessment and validation concerning data errors
In situ monitoring of moisture uptake of flax fiber reinforced composites under humid/dry conditions
The use of green materials such as natural fiber-reinforced composites represents an increasingly stringent prerogative in the future planning of industrial and non-industrial production. The optimization of these materials is the main aim of the current research, focused on the evaluation of the behavior of flax fiber reinforced composites exposed to isothermal adsorption and desorption cycles, at varying the partial pressure of water vapor (P/P0). For this purpose, the moisture uptake and the morphology changes of the composite material and their constituents were in situ monitored through a measurement protocol, by using a dynamic vapor sorption (DVS) analysis, coupled with an environmental scanning electron microscopy (ESEM) visual investigation. A dependence of moisture uptake and diffusivity on the composite morphology was clearly detected. In particular, no significant variation in the morphology of the specimen is noticed at low water vapor partial pressure (i.e., P/P0 up to 5.4%) due to the limited absorption capacity (i.e., lower than 1%). On the other hand, fibers morphology changes at increasing the partial pressure up to 25.1%, showing a sensitive increase in volume. This phenomenon becomes much more relevant for high relative humidity values (i.e., ~90%), reaching more than 6% of absorption capacity
Skeletal Anomaly Monitoring in Rainbow Trout (Oncorhynchus mykiss, Walbaum 1792) Reared under Different Conditions
The incidence of skeletal anomalies could be used as an indicator of the "quality" of rearing conditions as these anomalies are thought to result from the inability of homeostatic mechanisms to compensate for environmentally-induced stress and/or altered genetic factors. Identification of rearing conditions that lower the rate of anomalies can be an important step toward profitable aquaculture as malformed market-size fish have to be discarded, thus reducing fish farmers' profits. In this study, the occurrence of skeletal anomalies in adult rainbow trout grown under intensive and organic conditions was monitored. As organic aquaculture animal production is in its early stages, organic broodstock is not available in sufficient quantities. Non-organic juveniles could, therefore, be used for on-growing purposes in organic aquaculture production cycle. Thus, the adult fish analysed in this study experienced intensive conditions during juvenile rearing. Significant differences in the pattern of anomalies were detected between organically and intensively-ongrown specimens, although the occurrence of severe, commercially important anomalies, affecting 2-12.5% of individuals, was comparable in the two systems. Thus, organic aquaculture needs to be improved in order to significantly reduce the incidence of severe anomalies in rainbow trout
Using Proanthocyanidin as a Root Dentin Conditioner for GIC Restorations
Glass ionomer cements (GICs) are considered the material of choice for restoration of root carious lesions (RCLs). When bonding to demineralized dentin, the collapse of dentinal collagen during restorative treatment may pose challenges. Considering its acidic nature and collagen biomodification effects, proanthocyanidin (PAC) could be potentially used as a dentin conditioner to remove the smear layer while simultaneously acting to biomodify the dentinal collagen involved in the bonding interface. In this study, 6.5% w/v PAC was used as a conditioner for sound (SD) and laboratory demineralized (DD) root dentin before bonding to resin-modified GIC (FII), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified GIC (FVII), or a high-viscosity GIC (FIX). Root dentin conditioned with deionized distilled water (DDW) or polyacrylic acid (PAA) served as controls. Results indicated FII showed higher shear bond strength (SBS) on SD than the other 2 GICs, especially in PAA-conditioned samples; FIX showed significantly higher SBS than FII and FVII on PAA- or PAC-conditioned DD. In each category of GIC, PAA and PAC did not have a significant influence on SBS in most cases compared to DDW except for a significant decrease in PAC-conditioned SD bonded to FII and a significant increase in PAA-conditioned DD bonded to FIX. The bonding interface between GIC and SD was generally more resistant to the acid-base challenge than DD. Although the alterations in failure modes indicated a compromised interfacial interaction between GICs and PAC-treated root dentin, biomodification effects of PAC on dentin were observed from Raman microspectroscopy analysis in terms of the changes in mineral-to-matrix ratio and hydroxyproline-to-proline ratio of dentin adjacent to the bonding interface, especially of DD. Results from this study also indicated the possibility of using in situ characterization such as Raman microspectroscopy as a complementary approach to SBS test to investigate the integrity of the bonding interface
Stanja Jπ = 2+ i 0+, T = 0 8Be na energijama pobuđenja oko 20 MeV
The 7Li(d, αα)n reaction induced by deuterons of an incident energy of 7 MeV has been used to excite the 8Be nucleus in the region of excitation energy Ex of about 20 MeV. Each of the obtained αα coincidence spectra was fitted by an incoherent sum of the Jπ=2+ and 0+, T=0 8Be levels at Ex=20.1 and 20.2 MeV, respectively. The results show that the experimental data are well fitted when the G values deduced for these levels are 0.90 and 0.70 MeV, respectively.Reakcija 7Li (d, αα) n inducirana deuteronima energije 7 MeV je iskorištena za proučavanje jezgre 8Be na energijama pobuđenja Ex oko 20 MeV. Koincidentni αα spektri poravnani su nekoherentnim zbrojem stanja Jπ = 2 + na Ex = 20, 1 MeV i Jπ = 0+ na Ex = 20,2 MeV. Rezultati pokazuju da su eksperimentalni podaci najbolje opisani ako se za širine navedenih stanja uzmu vrijednosti 0,90 MeV odnosno 0, 70 Me V
- …