6 research outputs found

    Time-dependent transport through a T-coupled quantum dot

    Full text link
    We are considering the time-dependent transport through a discrete system, consiting of a quantum dot T-coupled to an infinite tight-binding chain. The periodic driving that is induced on the coupling between the dot and the chain, leads to the emergence of a characteristic multiple Fano resonant profile in the transmission spectrum. We focus on investigating the underlying physical mechanisms that give rise to the quantum resonances. To this end, we use Floquet theory for calculating the transmission spectrum and in addition employ the Geometric Phase Propagator (GPP) approach [Ann. Phys. 375, 351 (2016)] to calculate the transition amplitudes of the time-resolved virtual processes, in terms of which we describe the resonant behavior. This two fold approach, allows us to give a rigorous definition of a quantum resonance in the context of driven systems and explains the emergence of the characteristic Fano profile in the transmission spectrum.Comment: 9 pages, 4 figure

    Latent symmetry induced degeneracies

    Full text link
    Degeneracies in the energy spectra of physical systems are commonly considered to be either of accidental character or induced by symmetries of the Hamiltonian. We develop an approach to explain degeneracies by tracing them back to symmetries of an effective Hamiltonian derived by subsystem partitioning. We provide an intuitive interpretation of such latent symmetries by relating them to corresponding local symmetries in the powers of the underlying Hamiltonian matrix. As an application, we relate the degeneracies induced by the rotation symmetry of a real Hamiltonian to a non-abelian latent symmetry group. It is demonstrated that the rotational symmetries can be broken in a controlled manner while maintaining the underlying more fundamental latent symmetry. This opens up the perspective of investigating accidental degeneracies in terms of latent symmetries
    corecore