1 research outputs found
Particle-based simulation of ellipse-shaped particle aggregation as a model for vascular network formation
Computational modelling is helpful for elucidating the cellular mechanisms
driving biological morphogenesis. Previous simulation studies of blood vessel
growth based on the Cellular Potts model (CPM) proposed that elongated,
adhesive or mutually attractive endothelial cells suffice for the formation of
blood vessel sprouts and vascular networks. Because each mathematical
representation of a model introduces potential artifacts, it is important that
model results are reproduced using alternative modelling paradigms. Here, we
present a lattice-free, particle-based simulation of the cell elongation model
of vasculogenesis. The new, particle-based simulations confirm the results
obtained from the previous Cellular Potts simulations. Furthermore, our current
findings suggest that the emergence of order is possible with the application
of a high enough attractive force or, alternatively, a longer attraction
radius. The methodology will be applicable to a range of problems in
morphogenesis and noisy particle aggregation in which cell shape is a key
determining factor.Comment: 9 pages, 11 figures, 2 supplementary videos (on Youtube), submitted
to Computational Particle Mechanics, special issue: Jos\'e-Manuel Garcia
Aznar (Ed.) Particle-based simulations on cell and biomolecular mechanic