9 research outputs found

    Planning of Fast Charging Infrastructure for Electric Vehicles in a Distribution System and Prediction of Dynamic Price

    Full text link
    The increasing number of electric vehicles (EVs) has led to the need for installing public electric vehicle charging stations (EVCS) to facilitate ease of use and to support users who do not have the option of residential charging. The public electric vehicle charging infrastructures (EVCIs) must be equipped with a good number of EVCSs, with fast charging capability, to accommodate the EV traffic demand, which would otherwise lead to congestion at the charging stations. The location of these fast-charging infrastructures significantly impacts the distribution system (DS). We propose the optimal placement of fast-charging EVCIs at different locations in the distribution system, using multi-objective particle swarm optimization (MOPSO), so that the power loss and voltage deviations are kept at a minimum. Time-series analysis of the DS and EV load variations are performed using MATLAB and OpenDSS. We further analyze the cost benefits of the EVCIs under real-time pricing conditions and employ an autoregressive integrated moving average (ARIMA) model to predict the dynamic price. The simulated test system without any EVCI has a power loss of 164.36 kW and squared voltage deviations of 0.0235 p.u. Using the proposed method, the results obtained validate the optimal location of 5 EVCIs (each having 20 EVCSs with a 50kWh charger rating) resulting in a minimum power loss of 201.40 kW and squared voltage deviations of 0.0182 p.u. in the system. Significant cost benefits for the EVCIs are also achieved, and an R-squared value of dynamic price predictions of 0.9999 is obtained. This would allow the charging station operator to make promotional offers for maximizing utilization and increasing profits

    Identification of Forced Oscillation Sources in Wind Farms using E-SINDy

    Full text link
    The rapid growth of wind power generation has led to increased interest in understanding and mitigating the adverse effects of wind turbine wakes and forced oscillations in wind farms. In this paper, we model a wind farm consisting of three wind turbines connected to a distribution system. Forced oscillations due to wind shear and tower shadow are injected into the system. If these oscillations are unchecked, they could pose a severe threat to the operation of the system and damage to the equipment. Identifying the source and frequency of forced oscillations in wind farms from measurement data is challenging. Thus, we propose a data-driven approach that discovers the underlying equations governing a nonlinear dynamical system from measured data using the Ensemble-Sparse Identification of Nonlinear Dynamics (E-SINDy) method. The results suggest that E-SINDy is a valuable tool for identifying sources of forced oscillations in wind farms and could facilitate the development of suitable control strategies to mitigate their negative impacts

    Identification of Surface Defects on Solar PV Panels and Wind Turbine Blades using Attention based Deep Learning Model

    Full text link
    According to Global Electricity Review 2022, electricity generation from renewable energy sources has increased by 20% worldwide primarily due to more installation of large green power plants. Monitoring the renewable energy assets in those large power plants is still challenging as the assets are highly impacted by several environmental factors, resulting in issues like less power generation, malfunctioning, and degradation of asset life. Therefore, detecting the surface defects on the renewable energy assets would facilitate the process to maintain the safety and efficiency of the green power plants. An innovative detection framework is proposed to achieve an economical renewable energy asset surface monitoring system. First capture the asset's high-resolution images on a regular basis and inspect them to detect the damages. For inspection this paper presents a unified deep learning-based image inspection model which analyzes the captured images to identify the surface or structural damages on the various renewable energy assets in large power plants. We use the Vision Transformer (ViT), the latest developed deep-learning model in computer vision, to detect the damages on solar panels and wind turbine blades and classify the type of defect to suggest the preventive measures. With the ViT model, we have achieved above 97% accuracy for both the assets, which outperforms the benchmark classification models for the input images of varied modalities taken from publicly available sources

    A Resilient Power Distribution System using P2P Energy Sharing

    Full text link
    The adoption of distributed energy resources (DERs) such as solar panels and wind turbines is transforming the traditional energy grid into a more decentralized system, where microgrids are emerging as a key concept. Peer-to-Peer (P2P) energy sharing in microgrids enhances the efficiency and flexibility of the overall system by allowing the exchange of surplus energy and better management of energy resources. This work analyzes the impact of P2P energy sharing for three cases - within a microgrid, with neighboring microgrids, and all microgrids combined together in a distribution system. A standard IEEE 123 node test feeder integrated with renewable energy sources is partitioned into microgrids. For P2P energy sharing between microgrids, the results show significant benefits in cost, reduced energy dependence on the grid, and a significant improvement in the system's resilience. We also predicted the energy requirement for a microgrid to evaluate energy resilience for the control and operation of the microgrid. Overall, the analysis provides valuable insights into the performance and sustainability of microgrids with P2P energy sharing.Comment: arXiv admin note: text overlap with arXiv:2212.0231

    Machine Learning as an Accurate Predictor for Percolation Threshold of Diverse Networks

    Full text link
    The percolation threshold is an important measure to determine the inherent rigidity of large networks. Predictors of the percolation threshold for large networks are computationally intense to run, hence it is a necessity to develop predictors of the percolation threshold of networks, that do not rely on numerical simulations. We demonstrate the efficacy of five machine learning-based regression techniques for the accurate prediction of the percolation threshold. The dataset generated to train the machine learning models contains a total of 777 real and synthetic networks. It consists of 5 statistical and structural properties of networks as features and the numerically computed percolation threshold as the output attribute. We establish that the machine learning models outperform three existing empirical estimators of bond percolation threshold, and extend this experiment to predict site and explosive percolation. Further, we compared the performance of our models in predicting the percolation threshold using RMSE values. The gradient boosting regressor, multilayer perceptron and random forests regression models achieve the least RMSE values among considered models

    Advancements in Arc Fault Detection for Electrical Distribution Systems: A Comprehensive Review from Artificial Intelligence Perspective

    Full text link
    This comprehensive review paper provides a thorough examination of current advancements and research in the field of arc fault detection for electrical distribution systems. The increasing demand for electricity, coupled with the increasing utilization of renewable energy sources, has necessitated vigilance in safeguarding electrical distribution systems against arc faults. Such faults could lead to catastrophic accidents, including fires, equipment damage, loss of human life, and other critical issues. To mitigate these risks, this review article focuses on the identification and early detection of arc faults, with a particular emphasis on the vital role of artificial intelligence (AI) in the detection and prediction of arc faults. The paper explores a wide range of methodologies for arc fault detection and highlights the superior performance of AI-based methods in accurately identifying arc faults when compared to other approaches. A thorough evaluation of existing methodologies is conducted by categorizing them into distinct groups, which provides a structured framework for understanding the current state of arc fault detection techniques. This categorization serves as a foundation for identifying the existing constraints and future research avenues in the domain of arc fault detection for electrical distribution systems. This review paper provides the state of the art in arc fault detection, aiming to enhance safety and reliability in electrical distribution systems and guide future research efforts

    Modelling of the Electric Vehicle Charging Infrastructure as Cyber Physical Power Systems: A Review on Components, Standards, Vulnerabilities and Attacks

    Full text link
    The increasing number of electric vehicles (EVs) has led to the growing need to establish EV charging infrastructures (EVCIs) with fast charging capabilities to reduce congestion at the EV charging stations (EVCS) and also provide alternative solutions for EV owners without residential charging facilities. The EV charging stations are broadly classified based on i) where the charging equipment is located - on-board and off-board charging stations, and ii) the type of current and power levels - AC and DC charging stations. The DC charging stations are further classified into fast and extreme fast charging stations. This article focuses mainly on several components that model the EVCI as a cyberphysical system (CPS)

    Advancements in Enhancing Resilience of Electrical Distribution Systems: A Review on Frameworks, Metrics, and Technological Innovations

    Full text link
    This comprehensive review paper explores power system resilience, emphasizing its evolution, comparison with reliability, and conducting a thorough analysis of the definition and characteristics of resilience. The paper presents the resilience frameworks and the application of quantitative power system resilience metrics to assess and quantify resilience. Additionally, it investigates the relevance of complex network theory in the context of power system resilience. An integral part of this review involves examining the incorporation of data-driven techniques in enhancing power system resilience. This includes the role of data-driven methods in enhancing power system resilience and predictive analytics. Further, the paper explores the recent techniques employed for resilience enhancement, which includes planning and operational techniques. Also, a detailed explanation of microgrid (MG) deployment, renewable energy integration, and peer-to-peer (P2P) energy trading in fortifying power systems against disruptions is provided. An analysis of existing research gaps and challenges is discussed for future directions toward improvements in power system resilience. Thus, a comprehensive understanding of power system resilience is provided, which helps in improving the ability of distribution systems to withstand and recover from extreme events and disruptions

    Local Interpretable Model Agnostic Shap Explanations for machine learning models

    Full text link
    With the advancement of technology for artificial intelligence (AI) based solutions and analytics compute engines, machine learning (ML) models are getting more complex day by day. Most of these models are generally used as a black box without user interpretability. Such complex ML models make it more difficult for people to understand or trust their predictions. There are variety of frameworks using explainable AI (XAI) methods to demonstrate explainability and interpretability of ML models to make their predictions more trustworthy. In this manuscript, we propose a methodology that we define as Local Interpretable Model Agnostic Shap Explanations (LIMASE). This proposed ML explanation technique uses Shapley values under the LIME paradigm to achieve the following (a) explain prediction of any model by using a locally faithful and interpretable decision tree model on which the Tree Explainer is used to calculate the shapley values and give visually interpretable explanations. (b) provide visually interpretable global explanations by plotting local explanations of several data points. (c) demonstrate solution for the submodular optimization problem. (d) also bring insight into regional interpretation e) faster computation compared to use of kernel explainer.Comment: Under revie
    corecore