20,544 research outputs found
Fiscal decentralization and development: How crucial is local politics?
Does fiscal decentralization in a politically decentralized less developed country help strengthen democratic institutions at the grass root level? And is the impact of such decentralization on local politics important in determining local development? Our study on Indonesia suggests that fiscal decentralization enhanced free and fair local elections, though the incidence of elite capture, and the consequent breakdown of local democracy, was also present in significant proportions. Fiscal decentralization promoted development mostly in communities which transited out from elite capture to embrace free and fair elections. This was followed by communities that experienced the emergence of elite capture. Communities that continued to remain under either elite capture or free and fair elections did the worst. These findings suggest that while the emergence of elite capture exists, it may not necessarily
be the most harmful. Instead, and surprisingly so, stability of local polity hurts development the most
Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory
Land cover classification using multispectral satellite image is a very
challenging task with numerous practical applications. We propose a multi-stage
classifier that involves fuzzy rule extraction from the training data and then
generation of a possibilistic label vector for each pixel using the fuzzy rule
base. To exploit the spatial correlation of land cover types we propose four
different information aggregation methods which use the possibilistic class
label of a pixel and those of its eight spatial neighbors for making the final
classification decision. Three of the aggregation methods use Dempster-Shafer
theory of evidence while the remaining one is modeled after the fuzzy k-NN
rule. The proposed methods are tested with two benchmark seven channel
satellite images and the results are found to be quite satisfactory. They are
also compared with a Markov random field (MRF) model-based contextual
classification method and found to perform consistently better.Comment: 14 pages, 2 figure
Visual Imitation Learning with Recurrent Siamese Networks
It would be desirable for a reinforcement learning (RL) based agent to learn
behaviour by merely watching a demonstration. However, defining rewards that
facilitate this goal within the RL paradigm remains a challenge. Here we
address this problem with Siamese networks, trained to compute distances
between observed behaviours and the agent's behaviours. Given a desired motion
such Siamese networks can be used to provide a reward signal to an RL agent via
the distance between the desired motion and the agent's motion. We experiment
with an RNN-based comparator model that can compute distances in space and time
between motion clips while training an RL policy to minimize this distance.
Through experimentation, we have had also found that the inclusion of
multi-task data and an additional image encoding loss helps enforce the
temporal consistency. These two components appear to balance reward for
matching a specific instance of behaviour versus that behaviour in general.
Furthermore, we focus here on a particularly challenging form of this problem
where only a single demonstration is provided for a given task -- the one-shot
learning setting. We demonstrate our approach on humanoid agents in both 2D
with degrees of freedom (DoF) and 3D with DoF.Comment: PrePrin
- …