845 research outputs found
Evolution of superconductivity in PrFe1-xCoxAsO with x = 0.0 to 1.0
We report the synthesis and physical property characterization of
PrFe1-xCoxAsO with x = 0.0 to 1.0. The studied samples are synthesized by solid
state reaction route via vacuum encapsulation method. The pristine compound
PrFeAsO does not show superconductivity, but rather exhibits a metallic step
like transition due to spin density wave ordering of Fe moments below 150 K,
followed by another upward step due to anomalous ordering of Pr moments at 12
K. Both the Fe-SDW and Pr-TN temperatures decrease monotonically with Co
substitution at Fe site. Superconductivity appears in a narrow range of x from
0.07 to 0.25 with maximum Tc at 11.12 K for x = 0.15. Samples, with x = 0.25
exhibit metallic behavior right from 300 K down to 2 K, without any Fe-SDW or
Pr-TN steps in resistivity. In fact, though Fe-SDW decreases monotonically, the
Pr-TN is disappeared even with x = 0.02. The magneto transport measurements
below 14 Tesla on superconducting polycrystalline Co doped PrFeAsO lead to
extrapolated values of the upper critical fields [Hc2(0)] of up to 60 Tesla.Comment: 15 pages Text+Fig
Infrared Avalanche Photodiode Detectors
This study presents on the design, fabrication and characteristics of HgCdTe mid-wave infrared avalanche photodiode (MWIR APD). The gain of 800 at - 8 V bias is measured in n+-ν-p+ detector array with pitch size of 30 μm. The gain independent bandwidth of 6 MHz is achieved in the fabricated device. This paper also covers the status of HgCdTe and III-V material based IR-APD technology. These APDs having high internal gain and bandwidth are suitable for the detection of attenuated optical signals such as in the battle field conditions/long range imaging in defence and space applications. It provides a combined solution for both detection and amplification if the detector receives a very weak optical signal. HgCdTe based APDs provide high avalanche gain with low excess noise, high quantum efficiency, low dark current and fast response time
Electrical and Magnetic behaviour of PrFeAsO0.8F0.2 superconductor
The superconducting and ground state samples of PrFeAsO0.8F0.2 and PrFeAsO
have been synthesised via easy and versatile single step solid state reaction
route. X-ray & Reitveld refine parameters of the synthesised samples are in
good agreement to the earlier reported value of the structure. The ground state
of the pristine compound (PrFeAsO) exhibited a metallic like step in
resistivity below 150K followed by another step at 12K. The former is
associated with the spin density wave (SDW) like ordering of Fe spins and later
to the anomalous magnetic ordering for Pr moments. Both the resistivity
anomalies are absent in case of superconducting PrFeAsO0.8F0.2 sample. Detailed
high field (up to 12Tesla) electrical and magnetization measurements are
carried out for superconducting PrFeAsO0.8F0.2 sample. The PrFeAsO0.8F0.2
exhibited superconducting onset (Tconset) at around 47K with Tc({\rho} =0) at
38K. Though the Tconset remains nearly invariant, the Tc({\rho} =0) is
decreased with applied field, and the same is around 23K under applied field of
12Tesla. The upper critical field (Hc2) is estimated from the Ginzburg Landau
equation (GL) fitting, which is found to be ~ 182Tesla. Critical current
density (Jc) being calculated from high field isothermal magnetization (MH)
loops with the help of Beans critical state model, is found to be of the order
of 103 A/cm2. Summarily, the superconductivity characterization of single step
synthesised PrFeAsO0.8F0.2 superconductor is presented.Comment: 15 Pages Text + Fig
Magnetic phase transitions in SmCoAsO
Magnetization, x-ray diffraction and specific-heat measurements reveal that
SmCoAsO undergoes three magnetic phase transitions. A ferromagnetic transition
attributed to the Co ions, emerges at TC=57 K with a small saturation moment of
0.15muB/Co. Reorientation of the Co moment to an antiferromagnetic state is
obtained at TN2=45 K. The relative high paramagnetic effective moment Peff=1.57
MuB/Co indicates an itinerant ferromagnetic state of the Co sublattice. The
third magnetic transition at TN1=5 K is observed clearly in the specific-heat
study only. Both magnetic and 57Fe Mossbauer studies show that substitution of
small quantities of Fe for Co was unsuccessful.Comment: 10pages text+Figures: comments welcome ([email protected]
Metallic monoclinic phase in VO induced by electrochemical gating: in-situ Raman study
We report in-situ Raman scattering studies of electrochemically top gated
VO thin film to address metal-insulator transition (MIT) under gating. The
room temperature monoclinic insulating phase goes to metallic state at a gate
voltage of 2.6 V. However, the number of Raman modes do not change with
electrolyte gating showing that the metallic phase is still monoclinic. The
high frequency Raman mode A(7) near 616 cm ascribed to V-O vibration
of bond length 2.06 \AA~ in VO octahedra hardens with increasing gate
voltage and the B(3) mode near 654 cm softens. This shows that the
distortion of the VO octahedra in the monoclinic phase decreases with
gating. The time dependent Raman data at fixed gate voltages of 1 V (for 50
minute, showing enhancement of conductivity by a factor of 50) and 2 V (for 130
minute, showing further increase in conductivity by a factor of 5) show similar
changes in high frequency Raman modes A(7) and B(3) as observed in
gating. This slow change in conductance together with Raman frequency changes
show that the governing mechanism for metalization is more likely to the
diffusion controlled oxygen vacancy formation due to the applied electric
field.Comment: 5 pages, 6 figure
- …