57 research outputs found

    Recent advances in synthetic biology of cyanobacteria

    No full text
    Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO2. Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO2, diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this "green" chassis

    Cyanobacteria: Promising biocatalysts for sustainable chemical production

    No full text
    Cyanobacteria are photosynthetic prokaryotes showing great promise as biocatalysts for the direct conversion of CO2 into fuels, chemicals, and other value-added products. Introduction of just a few heterologous genes can endow cyanobacteria with the ability to transform specific central metabolites into many end products. Recent engineering efforts have centered around harnessing the potential of these microbial biofactories for sustainable production of chemicals conventionally produced from fossil fuels. Here, we present an overview of the unique chemistry that cyanobacteria have been co-opted to perform. We highlight key lessons learned from these engineering efforts and discuss advantages and disadvantages of various approaches

    A global analysis of adaptive evolution of operons in cyanobacteria

    No full text
    Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons

    Rhythm of Carbon and Nitrogen Fixation in Unicellular Cyanobacteria Under Turbulent and Highly Aerobic Conditions

    No full text
    Nitrogen fixing cyanobacteria are being increasingly explored for nitrogenase-dependent hydrogen production. Commercial success however will depend on the ability to grow these cultures at high cell densities. Photo-limitation at high cell densities leads to hindered photoautotrophic growth while turbulent conditions, which simulate flashing light effect, can lead to oxygen toxicity to the nitrogenase enzyme. Cyanothece sp. strain ATCC 51142, a known hydrogen producer, is reported to grow and fix nitrogen under moderately oxic conditions in shake flasks. In this study, we explore the growth and nitrogen fixing potential of this organism under turbulent conditions with volumetric oxygen mass transfer coefficient (K(L)a) values that are up to 20-times greater than in shake flasks. In a stirred vessel, the organism grows well in turbulent regime possibly due to a simulated flashing light effect with optimal growth at Reynolds number of approximately 35,000. A respiratory burst lasting for about 4h creates anoxic conditions intracellularly with near saturating levels of dissolved oxygen in the extracellular medium. This is concomitant with complete exhaustion of intracellular glycogen storage and upregulation of nifH and nifX, the genes encoding proteins of the nitrogenase complex. Further, the rhythmic oscillations in exhaust gas CO2 and O-2 profiles synchronize faithfully with those in biochemical parameters and gene expression thereby serving as an effective online monitoring tool. These results will have important implications in potential commercial success of nitrogenase-dependent hydrogen production by cyanobacteria. Biotechnol. Bioeng. 2013; 110:2371-2379. (c) 2013 Wiley Periodicals, Inc

    Site-Directed Modifications of the psbE and psbJ Genes in Synechocystis SP. PCC 6803

    No full text
    corecore