10 research outputs found

    Single-shot single-gate RF spin readout in silicon

    Full text link
    For solid-state spin qubits, single-gate RF readout can help minimise the number of gates required for scale-up to many qubits since the readout sensor can integrate into the existing gates required to manipulate the qubits (Veldhorst 2017, Pakkiam 2018). However, a key requirement for a scalable quantum computer is that we must be capable of resolving the qubit state within single-shot, that is, a single measurement (DiVincenzo 2000). Here we demonstrate single-gate, single-shot readout of a singlet-triplet spin state in silicon, with an average readout fidelity of 82.9%82.9\% at a 3.3 kHz3.3~\text{kHz} measurement bandwidth. We use this technique to measure a triplet T−T_- to singlet S0S_0 relaxation time of 0.62 ms0.62~\text{ms} in precision donor quantum dots in silicon. We also show that the use of RF readout does not impact the maximum readout time at zero detuning limited by the S0S_0 to T−T_- decay, which remained at approximately 2 ms2~\text{ms}. This establishes single-gate sensing as a viable readout method for spin qubits

    Characterization of a Scalable Donor-Based Singlet-Triplet Qubit Architecture in Silicon

    Full text link
    We present a donor-based quadruple-quantum-dot device, designed to host two singlet-triplet qubits fabricated by scanning tunnelling microscope lithography, with just two leads per qubit. The design is geometrically compact, with each pair of dots independently controlled via one gate and one reservoir. The reservoirs both supply electrons for the dots and measure the singlet-triplet state of each qubit via dispersive sensing. We verify the locations of the four phosphorus donor dots via an electrostatic model of the device. We study one of the observed singlet-triplet states with a tunnel coupling of 39 GHz and a S0-to-T- decay of 2 ms at zero detuning. We measure a 5 GHz electrostatic interaction between two pairs of dots separated by 65 nm. The results outline a low-gate-density pathway to a scalable 1D building block of atomic-precision singlet-triplet qubits using donors with dispersive readout

    Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor

    Full text link
    The realization of the surface code for topological error correction is an essential step towards a universal quantum computer1–3. For single-atom qubits in silicon4–7, the need to control and read out qubits synchronously and in parallel requires the formation of a two-dimensional array of qubits with control electrodes patterned above and below this qubit layer. This vertical three-dimensional device architecture8 requires the ability to pattern dopants in multiple, vertically separated planes of the silicon crystal with nanometre precision interlayer alignment. Additionally, the dopants must not diffuse or segregate during the silicon encapsulation. Critical components of this architecture—such as nanowires9, single-atom transistors4 and single-electron transistors10–have been realized on one atomic plane by patterning phosphorus dopants in silicon using scanning tunnelling microscope hydrogen resist lithography11,12. Here, we extend this to three dimensions and demonstrate single-shot spin read-out with 97.9% measurement fidelity of a phosphorus dopant qubit within a vertically gated single-electron transistor with <5 nm interlayer alignment accuracy. Our strategy ensures the formation of a fully crystalline transistor using just two atomic species: phosphorus and silicon

    Continuous Faraday measurement of spin precession without light shifts

    No full text
    We describe a dispersive Faraday optical probe of atomic spin which performs a weak measurement of spin projection of a quantum gas continuously for more than one second. To date, focusing bright far-off-resonance probes onto quantum gases has proved invasive due to strong scalar and vector light shifts exerting dipole and Stern-Gerlach forces. We show that tuning the probe near the magic-zero wavelength at 790 nm between the fine-structure doublet of 87Rb cancels the scalar light shift, and careful control of polarization eliminates the vector light shift. Faraday rotations due to each fine-structure line reinforce at this wavelength, enhancing the signal-to-noise ratio for a fixed rate of probe-induced decoherence. Using this minimally invasive spin probe, we perform microscale atomic magnetometry at high temporal resolution. Spectrogram analysis of the Larmor precession signal of a single spinor Bose-Einstein condensate measures a time-varying magnetic field strength with 1 mu G accuracy every 5 ms; or, equivalently, makes more than 200 successive measurements each at 10 pT root Hz sensitivity

    High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation

    Full text link
    We report the development of a high-sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead designed to minimize the geometric requirements of a charge sensor for scalable quantum-computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography, and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single-electron transistor (rf SET) with which to make a comparison of the charge-detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1 compared with an integration time of 55 ns for the rf SET. This level of sensitivity is suitable for fast (<15 μs) single-spin readout in quantum-information applications, with a significantly reduced geometric footprint compared to the rf SET
    corecore