2 research outputs found

    Impact of a combination of pimobendan, furosemide, and enalapril on heart rate variability in naturally occurring, symptomatic, myxomatous mitral valve degeneration dogs

    No full text
    Abstract Background Pimobendan, diuretics, and an angiotensin-converting enzyme inhibitor (ACEi) are widely used for the management of chronic valvular heart disease in dogs; however, the effects of that combination on heart rate variability (HRV) are unknown. The purpose of this study was to assess the HRV of symptomatic myxomatous mitral valve degeneration (MMVD) dogs in response to therapy with a combination of pimobendan, diuretics, and ACEi. Results MMVD stage C (n = 17) dogs were enrolled and a 1-hour Holter recording together with echocardiography, blood pressure measurement, and blood chemistry profiles were obtained before and 1, 3, and 6 months after oral treatment with pimobendan (0.25 mg/kg), enalapril (0.5 mg/kg), and furosemide (2 mg/kg) twice daily. The results revealed that MMVD stage C dogs at the baseline had lower values of time-domain indices, low frequency (LF), high frequency (HF), and total power, as well as higher value of LF/HF. Triple therapy significantly increases these parameters in MMVD stage C dogs (P < 0.05). A positive moderate correlation was observed between time domain parameters and a left ventricular internal diastole diameter normalized to body weight (P < 0.05). Conclusions It can be concluded that MMVD stage C dogs possess low HRV due to either the withdrawal of parasympathetic tone or enhanced sympathetic activation, and a combination therapy was shown to enhance cardiac autonomic modulation inferred from the increased heart rate variability. Therefore, a combination therapy may be useful for restoring normal autonomic nervous system activity in dogs with MMVD stage C

    Pimobendan prevents cardiac dysfunction, mitigates cardiac mitochondrial dysfunction, and preserves myocyte ultrastructure in a rat model of mitral regurgitation

    No full text
    Abstract Background Pimobendan has been proven to delay the onset of congestive heart failure (CHF) in dogs with mitral regurgitation (MR); however, molecular underlying mechanisms have not been fully elucidated. This study aimed to investigate (1) the effects of pimobendan on cardiac function, cardiac mitochondrial quality and morphology, and cardiac ultrastructure in a rat model of chronic MR and (2) the direct effect of pimobendan on intracellular reactive oxygen species (ROS) production in cardiac cells. MR was surgically induced in 20 Sprague-Dawley rats, and sham procedures were performed on 10 rats. Eight weeks post-surgery, the MR rats were randomly divided into two groups: the MR group and the MR + pimobendan group. Pimobendan (0.15 mg/kg) was administered twice a day via oral gavage for 4 weeks, whereas the sham and MR groups received equivalent volumes of drinking water. Echocardiography was performed at baseline (8 weeks post-surgery) and at the end of the study (4 weeks after treatment). At the end of the study protocol, all rats were euthanized, and their hearts were immediately collected, weighed, and used for transmission electron microscopy and mitochondrial quality assessments. To evaluate the role of pimobendan on intracellular ROS production, preventive or scavenging properties were tested with H2O2-induced ROS generation in rat cardiac myoblasts (H9c2). Results Pimobendan preserved cardiac functions and structure in MR rats. In addition, pimobendan significantly improved mitochondrial quality by attenuating ROS production and depolarization (P < 0.05). The cardiac ultrastructure and mitochondrial morphology were significantly preserved in the MR + pimobendan group. In addition, pimobendan appeared to play as a ROS scavenger, but not as a ROS preventer, in H2O2-induced ROS production in H9c2 cells. Conclusions Pimobendan demonstrated cardioprotective effects on cardiac function and ultrastructure by preserving mitochondrial quality and acted as an ROS scavenger in a rat model of MR
    corecore