23 research outputs found
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation
The critical behavior of the two-dimensional N-vector cubic model is studied
within the field-theoretical renormalization-group (RG) approach. The
beta-functions and critical exponents are calculated in the five-loop
approximation, RG series obtained are resummed using Pade-Borel-Leroy and
conformal mapping techniques. It is found that for N = 2 the continuous line of
fixed points is well reproduced by the resummed RG series and an account for
the five-loop terms makes the lines of zeros of both beta-functions closer to
each another. For N > 2 the five-loop contributions are shown to shift the
cubic fixed point, given by the four-loop approximation, towards the Ising
fixed point. This confirms the idea that the existence of the cubic fixed point
in two dimensions under N > 2 is an artifact of the perturbative analysis. In
the case N = 0 the results obtained are compatible with the conclusion that the
impure critical behavior is controlled by the Ising fixed point.Comment: 18 pages, 4 figure
Relaxational dynamics in 3D randomly diluted Ising models
We study the purely relaxational dynamics (model A) at criticality in
three-dimensional disordered Ising systems whose static critical behaviour
belongs to the randomly diluted Ising universality class. We consider the
site-diluted and bond-diluted Ising models, and the +- J Ising model along the
paramagnetic-ferromagnetic transition line. We perform Monte Carlo simulations
at the critical point using the Metropolis algorithm and study the dynamic
behaviour in equilibrium at various values of the disorder parameter. The
results provide a robust evidence of the existence of a unique model-A dynamic
universality class which describes the relaxational critical dynamics in all
considered models. In particular, the analysis of the size-dependence of
suitably defined autocorrelation times at the critical point provides the
estimate z=2.35(2) for the universal dynamic critical exponent. We also study
the off-equilibrium relaxational dynamics following a quench from T=\infty to
T=T_c. In agreement with the field-theory scenario, the analysis of the
off-equilibrium dynamic critical behavior gives an estimate of z that is
perfectly consistent with the equilibrium estimate z=2.35(2).Comment: 38 page
Critical equation of state of randomly dilute Ising systems
We determine the critical equation of state of three-dimensional randomly
dilute Ising systems, i.e. of the random-exchange Ising universality class. We
first consider the small-magnetization expansion of the Helmholtz free energy
in the high-temperature phase. Then, we apply a systematic approximation scheme
of the equation of state in the whole critical regime, that is based on
polynomial parametric representations matching the small-magnetization of the
Helmholtz free energy and satisfying a global stationarity condition. These
results allow us to estimate several universal amplitude ratios, such as the
ratio A^+/A^- of the specific-heat amplitudes. Our best estimate A^+/A^-=1.6(3)
is in good agreement with experimental results on dilute uniaxial
antiferromagnets.Comment: 21 pages, 1 figure, refs adde
Field-theory results for three-dimensional transitions with complex symmetries
We discuss several examples of three-dimensional critical phenomena that can
be described by Landau-Ginzburg-Wilson theories. We present an
overview of field-theoretical results obtained from the analysis of high-order
perturbative series in the frameworks of the and of the
fixed-dimension d=3 expansions. In particular, we discuss the stability of the
O(N)-symmetric fixed point in a generic N-component theory, the critical
behaviors of randomly dilute Ising-like systems and frustrated spin systems
with noncollinear order, the multicritical behavior arising from the
competition of two distinct types of ordering with symmetry O() and
O() respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200
Weak quenched disorder and criticality: resummation of asymptotic(?) series
In these lectures, we discuss the influence of weak quenched disorder on the
critical behavior in condensed matter and give a brief review of available
experimental and theoretical results as well as results of MC simulations of
these phenomena. We concentrate on three cases: (i) uncorrelated random-site
disorder, (ii) long-range-correlated random-site disorder, and (iii) random
anisotropy.
Today, the standard analytical description of critical behavior is given by
renormalization group results refined by resummation of the perturbation theory
series. The convergence properties of the series are unknown for most
disordered models. The main object of these lectures is to discuss the
peculiarities of the application of resummation techniques to perturbation
theory series of disordered models.Comment: Lectures given at the Second International Pamporovo Workshop on
Cooperative Phenomena in Condensed Matter (28th July - 7th August 2001,
Pamporovo, Bulgaria). 51 pages, 12 figures, 1 style files include
Randomly dilute spin models with cubic symmetry
We study the combined effect of cubic anisotropy and quenched uncorrelated
impurities on multicomponent spin models. For this purpose, we consider the
field-theoretical approach based on the Ginzburg-Landau-Wilson
Hamiltonian with cubic-symmetric quartic interactions and quenched randomness
coupled to the local energy density. We compute the renormalization-group
functions to six loops in the fixed-dimension (d=3) perturbative scheme. The
analysis of such high-order series provides an accurate description of the
renormalization-group flow. The results are also used to determine the critical
behavior of three-dimensional antiferromagnetic three- and four-state Potts
models in the presence of quenched impurities.Comment: 23 pages, 1 figure
Análise criminológica da proteção da integridade territorial da Ucrânia
Criminological analysis of the protection of the territorial integrity of Ukraine / Mykola Pakhnin, Andrii Nosach, Sergii Perepelytsia, Dariia Topal // DIXI. – 2022. – Vol. 24, № 2 (julio-diciembre). – P. 1-17. – DOI: https://doi.org/10.16925/2357-5891.2022.02.10Mykola Pakhnin, Andrii Nosach, Sergii Perepelytsia & Dariia Topal.
Criminological
analysis of the protection of the territorial integrity of Ukraine.
DIXI, vol. 24, n°. 2,
julio-diciembre 2022, 1-17.
DOI:
https://doi.org/10.16925/2357-5891.2022.02.10.Держава завжди унікальна у своїй діяльності та захисті, і для визнання кожної держави її цілісність завжди має поважатися — і ні за яких обставин не можна порушувати територіальну цілісність держави. З цією метою держава стає обов’язком забезпечити відповідне переслідування осіб, які злочинно посягають на територіальну цілісність. Навіть із запровадженням цього принципу територіальна цілісність держави завжди знаходиться під загрозою, що впливає на справжню сутність держави, яка полягає в захисті державного суверенітету. Ця стаття проголошує, що територіальна цілісність кожної держави повинна поважатися завжди, незалежно від обставин, а ті, хто її не поважає, повинні нести кримінальну відповідальність. У цьому питанні буде суть аналітичної методології дослідження, яка полягатиме у з’ясуванні кримінально-правового аспекту захисту територіальної цілісності України. З наведеної методології можна стверджувати, що відбуваються безперервні порушення територіальної цілісності України шляхом вчинення різноманітних злочинів. Саме тому потрібно щось робити у збереженні територіальної цілісності Держави Україна.The State is always unique in its activities and its protection, and for each State to be recognized, its integrity should always be respected — and under no circumstance the territorial integrity of a State should be tampered with. To this end, it becomes the responsibility of the State to ensure that those who criminally affect the territorial integrity should be prosecuted accordingly. Even with this principle put in place, the territorial integrity of the State is always threatened, thus affecting the real essence of the State being that of protecting State sovereignty. This article enunciates that the territorial integrity of every State should always be respected, regardless of the circumstances, and those who disrespect this should be criminally liable. In this question, there will be the essence of analytical research methodology, which will be to ascertain the criminal aspect of the protection of the territorial integrity of Ukraine. From the above methodology, one can say that there are continuous violations of the territorial integrity of Ukraine through the various crimes committed. It is for this reason that something needs to be done in preserving the territorial integrity of the State of Ukraine.Государство всегда уникально в своей деятельности и своей защите, и для того, чтобы каждое государство было признано, его целостность всегда должна уважаться, и ни при каких обстоятельствах нельзя посягать на территориальную целостность государства. С этой целью государство обязано обеспечить соответствующее судебное преследование тех, кто преступным образом затрагивает территориальную целостность. Даже при наличии этого принципа территориальная целостность государства всегда находится под угрозой, что затрагивает реальную сущность государства, заключающуюся в защите государственного суверенитета. В этой статье провозглашается, что территориальная целостность каждого государства всегда должна уважаться, независимо от обстоятельств, и те, кто нарушает это, должны нести уголовную ответственность. В этом вопросе будет суть методологии аналитического исследования, которая будет заключаться в констатации криминального аспекта защиты территориальной целостности Украины. Из приведенной методики можно сказать, что имеют место постоянные нарушения территориальной целостности Украины посредством совершения различных преступлений. Именно по этой причине необходимо что-то делать для сохранения территориальной целостности Государства Украина
Divergent Perturbation Series
Various perturbation series are factorially divergent. The behavior of their
high-order terms can be found by Lipatov's method, according to which they are
determined by the saddle-point configurations (instantons) of appropriate
functional integrals. When the Lipatov asymptotics is known and several lowest
order terms of the perturbation series are found by direct calculation of
diagrams, one can gain insight into the behavior of the remaining terms of the
series. Summing it, one can solve (in a certain approximation) various
strong-coupling problems. This approach is demonstrated by determining the
Gell-Mann - Low functions in \phi^4 theory, QED, and QCD for arbitrary coupling
constants. An overview of the mathematical theory of divergent series is
presented, and interpretation of perturbation series is discussed. Explicit
derivations of the Lipatov asymptotic forms are presented for some basic
problems in theoretical physics. A solution is proposed to the problem of
renormalon contributions, which hampered progress in this field in the late
1970s. Practical schemes for summation of perturbation series are described for
a coupling constant of order unity and in the strong-coupling limit. An
interpretation of the Borel integral is given for 'non-Borel-summable' series.
High-order corrections to the Lipatov asymptotics are discussed.Comment: Review article, 45 pages, PD