31 research outputs found

    Synthesis and characterization of mesoporous carbon for fuel cell applications

    No full text
    The synthesis and application aspects of ordered mesoporous carbon (OMC) as a novel material for fuel cell catalysts are reviewed in this paper. The synthesis and structural characterization of OMC is outlined and the recent advances in the synthesis of OMC relevant to fuel cell technologies is presented. Recent examples of the application of OMC as a support for fuel cell catalysts are summarized and practical approaches for the application of OMC for the fuel cell systems are discussed. Future perspectives on the use of OMC in energy conversion and storage devices are also suggested.close18718

    A Gram Scale Soft-Template Synthesis of Heteroatom Doped Nanoporous Hollow Carbon Spheres for Oxygen Reduction Reaction

    No full text
    Heteroatom-doped nanoporous carbon materials with unique hierarchical structures have been shown to be promising supports and catalysts for energy conversion; however, hard-template methods are limited by their inflexibility and time-consuming process. Soft-template methods have been suggested as an alternative, but they are limited by their picky requirements for stable reactions and the few known precursors for small-batch synthesis. In this study, a gram-scale soft-template-based silica-assisted method was investigated for producing nitrogen-doped hollow nanoporous carbon spheres (N-HNCS). Nitrogen doping is accomplished during preparation with enhanced electrocatalytic activity without complicating the methodology. To investigate the effect of the unique structural characteristics of N-HNCS (specific surface area: 1250 m2 g−1; pore volume: 1.2 cm3 g−1), cobalt was introduced as an active center for the oxygen reduction reaction. Finely tuned reaction conditions resulted in well-dispersed cobalt particles with minimal agglomeration. This sheds light on the advancement of new experimental procedures for developing more active and promising non-noble catalysts in large and stable batches

    Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine) and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell

    No full text
    Elevated-temperature (100~200 °C) polymer electrolyte membrane (PEM) fuel cells have many features, such as their high efficiency and simple system design, that make them ideal for residential micro-combined heat and power systems and as a power source for fuel cell electric vehicles. A proton-conducting solid-electrolyte membrane having high conductivity and durability at elevated temperatures is essential, and phosphoric-acid-containing polymeric material synthesized from cross-linked polybenzoxazine has demonstrated feasible characteristics. This paper reviews the design rules, synthesis schemes, and characteristics of this unique polymeric material. Additionally, a membrane electrode assembly (MEA) utilizing this polymer membrane is evaluated in terms of its power density and lifecycle by an in situ accelerated lifetime test. This paper also covers an in-depth discussion ranging from the polymer material design to the cell performance in consideration of commercialization requirements
    corecore