27 research outputs found

    Effect of Plant Growth-Promoting Rhizobacteria on Salicornia ramosissima Seed Germination under Salinity, CO2 and Temperature Stress

    Get PDF
    In a scenario of climate change and growing population, halophyte root microbiota interactions may be a sustainable solution to improve alternative crop production while combating abiotic stress. In this work, seeds of the cash crop halophyte Salicornia ramosissima were inoculated with five different plant growth-promoting rhizobacteria consortia, isolated from the rhizosphere of five halophytes in southwestern Spain salt marshes. For the first time, we recorded seed germination response to three interactive abiotic stressors, CO2 (400 and 700 ppm), temperature (25 and 29 ℃) and salinity (171, 510 and 1030 mM NaCl), all of them related to climate change. Salinity played a decisive role, as no significant differences were registered between treatments at 171 mM NaCl and no germination took place at 1030 mM NaCl. At 510 mM NaCl, one rhizobacterial consortium improved seed parameters notably, increasing up to 114% germination percentage and 65% seedlings biomass. These first findings encourage us to think that cash crop halophytes like S. ramosissima and halophyte root microbiota may be valuable resources for human or animal feeding in a future climate reality.Ministerio de Economía y Competitividad (CGL2016-75550-R)Ministerio de Educación, Cultura y Deporte (FPU014/03987

    Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils

    Get PDF
    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes

    Safe Cultivation of Medicago sativa in Metal-Polluted Soils from Semi-Arid Regions Assisted by Heatand Metallo-Resistant PGPR

    Get PDF
    Soil contamination with heavy metals is a constraint for plant establishment and development for which phytoremediation may be a solution, since rhizobacteria may alleviate plant stress under these conditions. A greenhouse experiment was conducted to elucidate the effect of toxic metals on growth, the activities of ROS (reactive oxygen species)-scavenging enzymes, and gene expression of Medicago sativa grown under different metal and/or inoculation treatments. The results showed that, besides reducing biomass, heavy metals negatively affected physiological parameters such as chlorophyll fluorescence and gas exchange, while increasing ROS-scavenging enzyme activities. Inoculation of M. sativa with a bacterial consortium of heat- and metallo-resistant bacteria alleviated metal stress, as deduced from the improvement of growth, lower levels of antioxidant enzymes, and increased physiological parameters. The bacteria were able to effectively colonize and form biofilms onto the roots of plants cultivated in the presence of metals, as observed by scanning electron microscopy. Results also evidenced the important role of glutathione reductase (GR), phytochelatin synthase (PCS), and metal transporter NRAMP1 genes as pathways for metal stress management, whereas the gene coding for cytochrome P450 (CP450) seemed to be regulated by the presence of the bacteria. These outcomes showed that the interaction of metal-resistant rhizobacteria/legumes can be used as an instrument to remediate metal-contaminated soils, while cultivation of inoculated legumes on these soils is still safe for animal grazing, since inoculation with bacteria diminished the concentrations of heavy metals accumulated in the aboveground parts of the plants to below toxic levelsMarruecos. Centre National pour la Recherche Scientifique et Technique (CNRST)-España, Ministerio de Economía y Competitividad (MINECO)-PPR2 /2016/42Unión Europea (FEDER)-CGL2016-75550-

    Impact of Plant Growth Promoting Bacteria on Salicornia ramosissima Ecophysiology and Heavy Metal Phytoremediation Capacity in Estuarine Soils

    Get PDF
    Salicornia ramosissima is a C3 halophyte that grows naturally in South Western Spain salt marshes, under soil salinity and heavy metal pollution (mostly Cu, Zn, As, and Pb) caused by both natural and anthropogenic pressure. However, very few works have reported the phytoremediation potential of S. ramosissima. In this work, we studied a microbe-assisted phytoremediation strategy under greenhouse conditions. We inoculated plant growth promoting (PGP) and heavy metal resistant bacteria in pots with S. ramosissima and natural non-polluted and polluted sediments collected from Spanish estuaries. Then, we analyzed plant ecophysiological and metal phytoaccumulation response. Our data suggested that inoculation in polluted sediments improved S. ramosissima plant growth in terms of relative growth rate (RGR) (32%) and number of new branches (61%). S. ramosissima photosynthetic fitness was affected by heavy metal presence in soil, but bacteria inoculation improved the photochemical apparatus integrity and functionality, as reflected by increments in net photosynthetic rate (21%), functionality of PSII (Fm and Fv/Fm) and electron transport rate, according to OJIP derived parameters. Beneficial effect of bacteria in polluted sediments was also observed by augmentation of intrinsic water use efficiency (28%) and slightly water content (2%) in inoculated S. ramosissima. Finally, our results demonstrated that S. ramosissima was able to accumulate great concentrations of heavy metals, mostly at root level, up to 200 mg Kg–1 arsenic, 0.50 mg Kg–1 cadmium, 400 mg Kg–1 copper, 25 mg Kg–1 nickel, 300 mg Kg–1 lead, and 300 mg Kg–1 zinc. Bioaugmentation incremented S. ramosissima heavy metal phytoremediation potential due to plant biomass increment, which enabled a greater accumulation capacity. Thus, our results suggest the potential use of heavy metal resistant PGPB to ameliorate the capacity of S. ramosissima as candidate for phytoremediation of salty polluted ecosystems.Ministerio de Economía y Competitividad (CGL2016-75550-R, AEI/FEDER, UE

    Development of porous silver nanoparticle/polycaprolactone/polyvinyl alcohol coatings for prophylaxis in titanium interconnected samples for dental implants

    Get PDF
    Stress shielding phenomenon, poor osseointegration, or bacterial infections of titanium dental implants are widely recognized as key problems that deeply affect their survival rate. In this work, a joint solution to solve these three limitations is proposed. The first two issues were minimized applying porous Ti samples. This substrate exhibits an appropriated biomechanical equilibrium (stiffness and mechanical resistance) and good biofunctionality (ability to promote bone ingrowth). On the other hand, the porous Ti disc was coated with biocompatible and non-toxic polymeric composites matrices using poly-ε-caprolactone and partially acetylated polyvinyl alcohol, combined with silver nanoparticles as a therapeutic antimicrobial agent. The optimization of the best blend composition and optimal nanoparticles concentration were investigated. Finally, the two composites with the best antimicrobial activity were infiltrated into porous Ti discs. The deposited coatings presented good adhesion and a honeycomb-like surface structure that could promote vascularization of the implant and enhance osseointegration.Ministerio de Ciencia e Innovación PID2019-109371GB-I00Junta de Andalucía PAIDI 2020, P20_00671Universidad de Sevilla US-138087, PPI505/2020, PPI532/202

    Coastal Ecosystems as Sources of Biofertilizers in Agriculture: From Genomics to Application in an Urban Orchard

    Get PDF
    Pantoea agglomerans RSO7, a rhizobacterium previously isolated from Spartina maritima grown on metal polluted saltmarshes, had demonstrated good plant growth promoting activity for its host halophyte, but was never tested in crops. The aims of this study were: (1) testing PGP activity on a model plant (alfalfa) in vitro; (2) testing a bacterial consortium including RSO7 as biofertilizer in a pilot experiment in urban orchard; and (3) identifying the traits related to PGP activities. RSO7 was able to enhance alfalfa growth in vitro, particularly the root system, besides improving plant survival and protecting plants against fungal contamination. In addition, in a pilot experiment in urban orchard, a consortium of three bacteria including RSO7 was able to foster the growth and yield of several winter crops between 1.5 and 10 fold, depending on species. Moreover, the analysis of chlorophyll fluorescence revealed that photosynthesis was highly ameliorated. Genome analysis of RSO7 depicted the robustness of this bacterial strain which showed resilience to multiple stresses (heat, cold, UV radiation, several xenobiotics). Together with wide metabolic versatility, genes conferring resistance to oxidative stress were identified. Many genes involved in metal resistance (As, Cu, Ni, Co, Zn, Se, Te) and in tolerance toward high osmolality (production of a battery of osmoprotectans) were also found. Regarding plant growth promoting properties, traits for phosphate solubilization, synthesis of a battery of siderophores and production of IAA were detected. In addition, the bacterium has genes related to key processes in the rhizosphere including flagellar motility, chemotaxis, quorum sensing, biofilm formation, plant-bacteria dialog, and high competitiveness in the rhizosphere. Our results suggest the high potential of this bacterium as bioinoculant for an array of crops. However, the classification in biosecurity group 2 prevents its use according to current European regulation. Alternative formulations for the application of the bioinoculant are discussed.Junta de Andalucía P11-RNM-7274-MOFIUS, University of Seville FIUS19/0065FEDER, Junta de Andalucía US-1262036University of Seville AE2-1

    Development of porous silver nanoparticle/polycaprolactone/polyvinyl alcohol coatings for prophylaxis in titanium interconnected samples for dental implants

    Get PDF
    Stress shielding phenomenon, poor osseointegration, or bacterial infections of titanium dental implants are widely recognized as key problems that deeply affect their survival rate. In this work, a joint solution to solve these three limitations is proposed. The first two issues were minimized applying porous Ti samples. This substrate exhibits an appropriated biomechanical equilibrium (stiffness and mechanical resistance) and good biofunctionality (ability to promote bone ingrowth). On the other hand, the porous Ti disc was coated with biocompatible and non-toxic polymeric composites matrices using poly-ε-caprolactone and partially acetylated polyvinyl alcohol, combined with silver nanoparticles as a therapeutic antimicrobial agent. The optimization of the best blend composition and optimal nanoparticles concentration were investigated. Finally, the two composites with the best antimicrobial activity were infiltrated into porous Ti discs. The deposited coatings presented good adhesion and a honeycomb-like surface structure that could promote vascularization of the implant and enhance osseointegration.Ministry of Science and Innovation of Spain grant PID2019-109371GB-I00Junta de Andalucía (Spain) PAIDI P20_00671FEDER Andalucía US-1380878Universidad de Sevilla, Spain PPI505/2020Universidad de Sevilla, Spain PPI532/202

    Improved Medicago sativa Nodulation under Stress Assisted by Variovorax sp. Endophytes

    Get PDF
    Legumes are the recommended crops to fight against soil degradation and loss of fertility because of their known positive impacts on soils. Our interest is focused on the identification of plant-growth-promoting endophytes inhabiting nodules able to enhance legume growth in poor and/or degraded soils. The ability of Variovorax paradoxus S110T and Variovorax gossypii JM-310T to promote alfalfa growth in nutrient-poor and metal-contaminated estuarine soils was studied. Both strains behaved as nodule endophytes and improved in vitro seed germination and plant growth, as well as nodulation in co-inoculation with Ensifer medicae MA11. Variovorax ameliorated the physiological status of the plant, increased nodulation, chlorophyll and nitrogen content, and the response to stress and metal accumulation in the roots of alfalfa growing in degraded soils with moderate to high levels of contamination. The presence of plant-growth-promoting traits in Variovorax, particularly ACC deaminase activity, could be under the observed in planta effects. Although the couple V. gossypii-MA11 reported a great benefit to plant growth and nodulation, the best result was observed in plants inoculated with the combination of the three bacteria. These results suggest that Variovorax strains could be used as biofertilizers to improve the adaptation of legumes to degraded soils in soil-recovery programs.España MCIN/AEI/10.13039/501100011033España Ministry of Science and Innovation UE “NextGenerationEU/PRTR (PDC2021-120951-I00

    Dynamics and numerical simulations to predict empirical antibiotic treatment of multi-resistant Pseudomonas aeruginosa infection

    Get PDF
    This work discloses an epidemiological mathematical model to predict an empirical treatment for dogs infected by Pseudomonas aeruginosa. This dangerous pathogen is one of the leading causes of multi-resistant infections and can be transmitted from dogs to humans. Numerical simulations and appropriated codes were developed using Matlab software to gather information concerning long-time dynamics of the susceptible, infected and recovered individuals. All data compiled from the mathematical model was used to provide an appropriated antibiotic sensitivity panel for this specific infection. In this study, several variables have been included in this model to predict which treatment should be prescribed in emergency cases, when there is no time to perform an antibiogram or the cost of it could not be assumed. In particular, we highlight the use of this model aiming to become part of the convenient toolbox of Public Health research and decision-making in the design of the mitigation strategy of bacterial pathogens

    Microbiota-liver-bile salts axis, a novel mechanism involved in the contrasting effects of sodium selenite and selenium-nanoparticle supplementation on adipose tissue development in adolescent rats

    Get PDF
    Adolescence is a period during which body composition changes deeply. Selenium (Se) is an excellent antioxidant trace element related to cell growth and endocrine function. In adolescent rats, low Se supplementation affects adipocyte development differently depending on its form of administration (selenite or Se nanoparticles (SeNPs). Despite this effect being related to oxidative, insulin-signaling and autophagy processes, the whole mechanism is not elucidated. The microbiota–liver–bile salts secretion axis is related to lipid homeostasis and adipose tissue development. Therefore, the colonic microbiota and total bile salts homeostasis were explored in four experimental groups of male adolescent rats: control, low-sodium selenite supplementation, low SeNP supplementation and moderate SeNPs supplementation. SeNPs were obtained by reducing Se tetrachloride in the presence of ascorbic acid. Supplementation was received orally through water intake; low-Se rats received twice more Se than control animals and moderate-Se rats tenfold more. Supplementation with low doses of Se clearly affected anaerobic colonic microbiota profile and bile salts homeostasis. However, these effects were different depending on the Se administration form. Selenite supplementation primarily affected liver by decreasing farnesoid X receptor hepatic function, leading to the accumulation of hepatic bile salts together to increase in the ratio Firmicutes/Bacteroidetes and glucagon-like peptide-1 (GLP-1) secretion. In contrast, low SeNP levels mainly affected microbiota, moving them towards a more prominent Gram-negative profile in which the relative abundance of Akkermansia and Muribaculaceae was clearly enhanced and the Firmicutes/Bacteroidetes ratio decreased. This bacterial profile is directly related to lower adipose tissue mass. Moreover, low SeNP administration did not modify bile salts pool in serum circulation. In addition, specific gut microbiota was regulated upon administration of low levels of Se in the forms of selenite or SeNPs, which are properly discussed. On its side, moderate-SeNPs administration led to great dysbiosis and enhanced the abundance of pathogenic bacteria, being considered toxic. These results strongly correlate with the deep change in adipose mass previously found in these animals, indicating that the microbiota–liver–bile salts axis is also mechanistically involved in these changes.Junta de Andalucía y proyectos FEDER Andalucía de la Unión Europea - US-1380878Ministerio de Ciencia, Innovación y Universidades de Epaña - PID2019-109371GB-I00VII Plan Propio de Investigación y Transferencia de la Universidad de Sevilla US 2022 - 2022/00000332 y 2022/0000027
    corecore