211 research outputs found
Anthracyclines, proteasome activity and multi-drug-resistance
BACKGROUND: P-glycoprotein is responsible for the ATP-dependent export of certain structurally unrelated compounds including many chemotherapeutic drugs. Amplification of P-glycoprotein activity can result in multi-drug resistance and is a common cause of chemotherapy treatment failure. Therefore, there is an ongoing search for inhibitors of P-glycoprotein. Observations that cyclosporin A, and certain other substances, inhibit both the proteasome and P-glycoprotein led us to investigate whether anthracyclines, well known substrates of P-gp, also inhibit the function of the proteasome. METHODS: Proteasome function was measured in cell lysates from ECV304 cells incubated with different doses of verapamil, doxorubicin, daunorubicin, idarubicin, epirubicin, topotecan, mitomycin C, and gemcitabine using a fluorogenic peptide assay. Proteasome function in living cells was monitored using ECV304 cells stably transfected with the gene for an ubiquitin/green fluorescent protein fusion protein. The ability of the proteasome inhibitor MG-132 to affect P-glycoprotein function was monitored by fluorescence due to accumulation of daunorubicin in P-glycoprotein overexpressing KB 8-5 cells. RESULTS: Verapamil, daunorubicin, doxorubicin, idarubicin, and epirubicin inhibited 26S chymotrypsin-like function in ECV304 extracts in a dose-dependent fashion. With the exception of daunorubicin, 20S proteasome function was also suppressed. The proteasome inhibitor MG-132 caused a dose-dependent accumulation of daunorubicin in KB 8-5 cells that overexpress P-glycoprotein, suggesting that it blocked P-glycoprotein function. CONCLUSION: Our data indicate that anthracyclines inhibit the 26S proteasome as well as P-glycoprotein. Use of inhibitors of either pathway in cancer therapy should take this into consideration and perhaps use it to advantage, for example during chemosensitization by proteasome inhibitors
The proteasome inhibitor MG-132 sensitizes PC-3 prostate cancer cells to ionizing radiation by a DNA-PK-independent mechanism
BACKGROUND: By modulating the expression levels of specific signal transduction molecules, the 26S proteasome plays a central role in determining cell cycle progression or arrest and cell survival or death in response to stress stimuli, including ionizing radiation. Inhibition of proteasome function by specific drugs results in cell cycle arrest, apoptosis and radiosensitization of many cancer cell lines. This study investigates whether there is also a concomitant increase in cellular radiosensitivity if proteasome inhibition occurs only transiently before radiation. Further, since proteasome inhibition has been shown to activate caspase-3, which is involved in apoptosis, and caspase-3 can cleave DNA-PKcs, which is involved in DNA-double strand repair, the hypothesis was tested that caspase-3 activation was essential for both apoptosis and radiosensitization following proteasome inhibition. METHODS: Prostate carcinoma PC-3 cells were treated with the reversible proteasome inhibitor MG-132. Cell cycle distribution, apoptosis, caspase-3 activity, DNA-PKcs protein levels and DNA-PK activity were monitored. Radiosensitivity was assessed using a clonogenic assay. RESULTS: Inhibition of proteasome function caused cell cycle arrest and apoptosis but this did not involve early activation of caspase-3. Short-time inhibition of proteasome function also caused radiosensitization but this did not involve a decrease in DNA-PKcs protein levels or DNA-PK activity. CONCLUSION: We conclude that caspase-dependent cleavage of DNA-PKcs during apoptosis does not contribute to the radiosensitizing effects of MG-132
The effects of tea extracts on proinflammatory signaling
BACKGROUND: Skin toxicity is a common side effect of radiotherapy for solid tumors. Its management can cause treatment gaps and thus can impair cancer treatment. At present, in many countries no standard recommendation for treatment of skin during radiotherapy exists. In this study, we explored the effect of topically-applied tea extracts on the duration of radiation-induced skin toxicity. We investigated the underlying molecular mechanisms and compared effects of tea extracts with the effects of epigallocatechin-gallate, the proposed most-active moiety of green tea. METHODS: Data from 60 patients with cancer of the head and neck or pelvic region topically treated with green or black tea extracts were analyzed retrospectively. Tea extracts were compared for their ability to modulate IL-1Ξ², IL-6, IL-8, TNFΞ± and PGE(2 )release from human monocytes. Effects of tea extracts on 26S proteasome function were assessed. NF-ΞΊB activity was monitored by EMSAs. Viability and radiation response of macrophages after exposure to tea extracts was measured by MTT assays. RESULTS: Tea extracts supported the restitution of skin integrity. Tea extracts inhibited proteasome function and suppressed cytokine release. NF-ΞΊB activity was altered by tea extracts in a complex, caspase-dependent manner, which differed from the effects of epigallocatechin-gallate. Additionally, both tea extracts, as well as epigallocatechin-gallate, slightly protected macrophages from ionizing radiation CONCLUSION: Tea extracts are an efficient, broadly available treatment option for patients suffering from acute radiation-induced skin toxicity. The molecular mechanisms underlying the beneficial effects are complex, and most likely not exclusively dependent on effects of tea polyphenols such as epigallocatechin-gallate
Antipsychotic dose escalation as a trigger for Neuroleptic Malignant Syndrome (NMS): literature review and case series report
Background: βNeuroleptic malignant syndromeβ (NMS) is a potentially fatal idiosyncratic reaction to any medication which affects the central dopaminergic system. Between 0.5% and 1% of patients exposed to antipsychotics develop the condition. Mortality rates may be as high as 55% and many risk factors have been reported. Although rapid escalation of antipsychotic dose is thought to be an important risk factor, to date it has not been the focus of a published case series or scientifically defined.
<p/>Aims: To identify cases of NMS and review risk factors for its development with a particular focus on rapid dose escalation in the 30 days prior to onset.
<p/>Methodology: A review of the literature on rapid dose escalation was undertaken and a pragmatic definition of βrapid dose escalationβ was made. NMS cases were defined using DSM-IV criteria and systematically identified within a secondary care mental health service. A ratio of titration rate was calculated for each NMS patient and βrapid escalatorsβ and βnon rapid escalatorsβ were compared.
<p/>Results: 13 cases of NMS were identified. A progressive mean dose increase 15 days prior to the confirmed episode of NMS was observed (241.7mg/day during days 1-15 to 346.9mg/day during days 16-30) and the mean ratio of dose escalation for NMS patients was 1.4. Rapid dose escalation was seen in 5/13 cases and non rapid escalators had markedly higher daily cumulative antipsychotic dose compared to rapid escalators.
<p/>Conclusions: Rapid dose escalation occurred in less than half of this case series (n=5, 38.5%), although there is currently no consensus on the precise definition of rapid dose escalation. Cumulative antipsychotic dose β alongside other known risk factors - may also be important in the development of NMS
Use of antipsychotics and benzodiazepines in patients with psychiatric emergencies: Results of an observational trial
<p>Abstract</p> <p>Background</p> <p>Conventional antipsychotics augmented with benzodiazepines have been the standard acute treatment for psychiatric emergencies for more than 50 years. The inability of patients to give informed consent limits randomised, controlled studies. This observational study on immediate therapy for aggression and impulse control in acutely agitated patients (IMPULSE) evaluated the short-term effectiveness and tolerability of atypical and typical antipsychotic medications (AP) in a non-interventional setting.</p> <p>Methods</p> <p>This was a comparative, non-randomised, prospective, open-label, observational study. Treatment over the first 5 days was classified according to whether any olanzapine, risperidone, or haloperidol was included or not. Documentations (PANSS-excited component, CGI-aggression, CGI-suicidality, tranquilisation score) were at baseline (day 1) and days 2β6 after start of AP.</p> <p>Results</p> <p>During the short treatment-period, PANSS-EC and CGI-aggression scores improved in all cohorts. 68.7% of patients treated with olanzapine, 72.2% of patients treated with risperidone, and 83.3% of patients treated with haloperidol received concomitant benzodiazepines (haloperidol vs. non-haloperidol: p < 0.001). More patients treated with olanzapine (73.8%) were fully alert according to a tranquilisation score and active at day 2 than patients treated with risperidone (57.1%) or haloperidol (58.0%).</p> <p>Conclusion</p> <p>Current medication practices for immediate aggression control are effective with positive results present within a few days. In this study, concomitant benzodiazepine use was significantly more frequent in patients receiving haloperidol.</p
Non-Invasive In Vivo Imaging of Tumor-Associated CD133/Prominin
detection of cancer stem cells is of great importance. detection of CD133/prominin, a cancer stem cell surface marker for a variety of tumor entities. The CD133-specific monoclonal antibody AC133.1 was used for quantitative fluorescence-based optical imaging of mouse xenograft models based on isogenic pairs of CD133 positive and negative cell lines. A first set consisted of wild-type U251 glioblastoma cells, which do not express CD133, and lentivirally transduced CD133-overexpressing U251 cells. A second set made use of HCT116 colon carcinoma cells, which uniformly express CD133 at levels comparable to primary glioblastoma stem cells, and a CD133-negative HCT116 derivative. Not surprisingly, visualization and quantification of CD133 in overexpressing U251 xenografts was successful; more importantly, however, significant differences were also found in matched HCT116 xenograft pairs, despite the lower CD133 expression levels. The binding of i.v.-injected AC133.1 antibodies to CD133 positive, but not negative, tumor cells isolated from xenografts was confirmed by flow cytometry. imaging of tumor-associated CD133 is feasible and that CD133 antibody-based tumor targeting is efficient. This should facilitate developing clinically applicable cancer stem cell imaging methods and CD133 antibody-based therapeutics
NF-ΞΊB inhibition impairs the radioresponse of hypoxic EMT-6 tumour cells through downregulation of inducible nitric oxide synthase
Hypoxic EMT-6 tumour cells displayed a high level of inducible nitric oxide synthase (iNOS) and an increased radiosensitivity after a 16 h exposure to lipopolysaccharide, a known activator of nuclear factor-ΞΊB (NF-ΞΊB). Both iNOS activation and radioresponse were impaired by the NF-ΞΊB inhibitors phenylarsine oxide and lactacystin. Contrasting to other studies, our data show that inhibition of NF-ΞΊB may impair the radioresponse of tumour cells through downregulation of iNOS. Β© 2003 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
NFV, an HIV-1 protease inhibitor, induces growth arrest, reduced Akt signalling, apoptosis and docetaxel sensitisation in NSCLC cell lines
HIV-1 protease inhibitor (PI), nelfinavir (NFV) induced growth arrest and apoptosis of NCI-H460 and -H520, A549, EBC-1 and ABC-1 non-small-cell lung cancer (NSCLC) cells in association with upregulation of p21waf1, p27 kip1 and p53, and downregulation of Bcl-2 and matrix metalloproteinase (MMP)-2 proteins. We found that NFV blocked Akt signalling in these cells as measured by Akt kinase assay with glycogen synthase kinase-3Ξ±/Ξ² (GSK-3Ξ±/Ξ²) as a substrate. To explore the role of Akt signalling in NFV-mediated growth inhibition of NSCLC cells, we blocked this signal pathway by transfection of Akt small interfering RNA (siRNA) in these cells; transient transfection of Akt siRNA in NCI-H460 cells decreased the level of Bcl-2 protein and slowed their proliferation compared to the nonspecific siRNA-transfected cells. Conversely, forced-expression of Akt partially reversed NFV-mediated growth inhibition of these cells, suggesting that Akt may be a molecular target of NFV in NSCLC cells. Also, we found that inhibition of Akt signalling by NFV enhanced the ability of docetaxel to inhibit the growth of NCI-H460 and -H520 cells, as measured by MTT assay. Importantly, NFV slowed the proliferation and induced apoptosis of NCI-H460 cells present as tumour xenografts in nude mice without adverse systemic effects. Taken together, this family of compounds might be useful for the treatment of individuals with NSCLC
- β¦