3 research outputs found
Critical Evaluation of Human Oral Bioavailability for Pharmaceutical Drugs by Using Various Cheminformatics Approaches
PURPOSE: Oral bioavailability (%F) is a key factor that determines the fate of a new drug in clinical trials. Traditionally, %F is measured using costly and time -consuming experimental tests. Developing computational models to evaluate the %F of new drugs before they are synthesized would be beneficial in the drug discovery process. METHODS: We employed Combinatorial Quantitative Structure-Activity Relationship approach to develop several computational %F models. We compiled a %F dataset of 995 drugs from public sources. After generating chemical descriptors for each compound, we used random forest, support vector machine, k nearest neighbor, and CASE Ultra to develop the relevant QSAR models. The resulting models were validated using five-fold cross-validation. RESULTS: The external predictivity of %F values was poor (R(2)=0.28, n=995, MAE=24), but was improved (R(2)=0.40, n=362, MAE=21) by filtering unreliable predictions that had a high probability of interacting with MDR1 and MRP2 transporters. Furthermore, classifying the compounds according to the %F values (%F<50% as “low”, %F≥50% as ‘high”) and developing category QSAR models resulted in an external accuracy of 76%. CONCLUSIONS: In this study, we developed predictive %F QSAR models that could be used to evaluate new drug compounds, and integrating drug-transporter interactions data greatly benefits the resulting models