49 research outputs found

    Collenchyma in Panicum maximum (Poaceae): localisation and possible role

    No full text
    This work relates the occurrence and distribution of collenchyma in Panicum maximum Jacq. P. maximum leaves were collected at different phases of development and sampled from both the base of the sheath and from the sheath-leaf blade transition area. For the stems, the study was made by using hand-cut sections of the internodal base. In the leaves, analyses of serial sections showed, at the base and sheath-leaf blade transition area, a sudden change of tissue at vascular bundle. The vascular bundles are surrounded by sclerenchyma, both in the sheath and the leaf blade, as well as by fibrous threads that occur on the adaxial side of the central bundles. However, at the base of the sheath and at the sheath-leaf blade transition area, sclerenchyma was substituted for collenchyma. In the stem, the substitution of sclerenchyma associated with vascular bundles for collenchyma occurs at the base of the internode, in the pulvinus region. The analyses from transmission electron microscopy showed the presence of lamellated cell wall and active protoplast in collenchyma cells

    Ontogenesis of the fruit pulp layer of Hymenaea stigonocarpa (Fabaceae : Caesalpinioideae)

    No full text
    Hymenaea, a genus of major economic importance, has been the subject of several botanical studies. However, there is disagreement over the origin of the edible fruit pulp of Hymenaea, as there are no ontogenetic studies on this organ. According to some authors, the edible layer results from transformations of the mesocarp and endocarp, while according to others, it is considered a seed aril. There are still others who regard this layer as originating from an undefined region of the pericarp. To understand the nature and origin of the pulp layer, Hymenaea stigonocarpa Mart. ex Hayne ovaries and fruit were processed according to standard techniques. The production of the fruit pulp layer starts immediately after anthesis. During anthesis, the inner epidermal cells of the ovary show periclinal division and form a new layer of cells towards the mesocarp; this remains meristematic and initiates cell production by predominantly periclinal divisions, producing a compact tissue towards the locule. This tissue will become the fruit pulp layer, the inner endocarp. The seed coat shows typical testal structure without evidence of aril formation. This allows us to conclude that the fruit pulp layers are exclusively made from part of the endocarp. We also observed resin cavities on outer mesocarp and outer endocarp
    corecore