14 research outputs found

    Srebf1a is a key regulator of transcriptional control for adipogenesis

    Get PDF
    Adipogenesis is regulated by a complex cascade of transcriptional factors, but little is known about the early events that regulate the adipogenic program. Here, we report the role of the srebf1a gene in the differentiation of fibroblastic 3T3-F442A cells. We found that expression of srebf1a depended on GSK3β activity and that GSK3β activity was necessary for C/EBPβ phosphorylation at Thr188. Knockdown of srebf1a inhibited the adipogenic program because it blocked the expression of genes encoding PPARγ2, C/EBPα, SREBP1c and even FABP4, demonstrating that SREBP1a activation is upstream of these three essential adipogenic transcription factors. Kinetic analysis during differentiation illustrated that the order of expression of adipogenic genes was the following: cebpb, srebf1a, pparg2, cebpa, srebp1c and fabp4. Our data suggest that srebf1a acts as an essential link between the GSK3β-C/EBPβ signaling axis and the beginning of the adipogenic transcriptional cascade

    Metabolic Flux Analysis of Mitochondrial Uncoupling in 3T3-L1 Adipocytes

    Get PDF
    BACKGROUND:Increasing energy expenditure at the cellular level offers an attractive option to limit adiposity and improve whole body energy balance. In vivo and in vitro observations have correlated mitochondrial uncoupling protein-1 (UCP1) expression with reduced white adipose tissue triglyceride (TG) content. The metabolic basis for this correlation remains unclear. METHODOLOGY/PRINCIPAL FINDINGS:This study tested the hypothesis that mitochondrial uncoupling requires the cell to compensate for the decreased oxidation phosphorylation efficiency by up-regulating lactate production, thus redirecting carbon flux away from TG synthesis. Metabolic flux analysis was used to characterize the effects of non-lethal, long-term mitochondrial uncoupling (up to 18 days) on the pathways of intermediary metabolism in differentiating 3T3-L1 adipocytes. Uncoupling was induced by forced expression of UCP1 and chemical (FCCP) treatment. Chemical uncoupling significantly decreased TG content by ca. 35%. A reduction in the ATP level suggested diminished oxidative phosphorylation efficiency in the uncoupled adipocytes. Flux analysis estimated significant up-regulation of glycolysis and down-regulation of fatty acid synthesis, with chemical uncoupling exerting quantitatively larger effects. CONCLUSIONS/SIGNIFICANCE:The results of this study support our hypothesis regarding uncoupling-induced redirection of carbon flux into glycolysis and lactate production, and suggest mitochondrial proton translocation as a potential target for controlling adipocyte lipid metabolism
    corecore