4,659 research outputs found

    Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics

    Get PDF
    The ability to achieve near lossless coupling between a waveguide and a resonator is fundamental to many quantum-optical studies as well as to practical applications of such structures. The nature of loss at the junction is described by a figure of merit called ideality. It is shown here that under appropriate conditions ideality in excess of 99.97% is possible using fiber-taper coupling to high-Q silica microspheres. To verify this level of coupling, a technique is introduced that can both measure ideality over a range of coupling strengths and provide a practical diagnostic of parasitic coupling within the fiber-taper-waveguide junction

    Photonic Crystal Nanocavities and Waveguides

    Get PDF
    Fabrication of optical structures has evolved to a precision which allows us to control light within etched nanostructures. Nano-optic cavities can be used for efficient and flexible concentration of light in small volumes, and control over both emission wavelength and frequency. Conversely, if a periodic pattern is defined in the top semitransparent metal layer by lithography, it is possible to efficiently couple out the light out of a semiconductor and to simultaneously enhance the spontaneous emission rate. Here we demonstrate the use of photonic crystals for efficient light localization and light extraction

    Photonic Crystals and their Applications to Efficient Light Emitters

    Get PDF
    When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic bandgap mirrors provide us with the geometries needed to confine and concentrate light into extremely small volumes and to obtain very high field intensities. Fabrication of optical structures has now evolved to a precision which allows us to control light within such etched nanostructures. Sub-wavelength nano-optic cavities can be used for efficient and flexible control over both emission wavelength and frequency, and nanofabricated optical waveguides can be used for efficient coupling of light between devices. The reduction of the size of optical components leads to their integration in large numbers and the possibility to combine different functionalities on a single chip. We show uses of such crystals in functional nonlinear optical devices, such as lasers, modulators, add/drop filters, polarizers and detectors

    Surface Encapsulation for Low-Loss Silicon Photonics

    Get PDF
    Encapsulation layers are explored for passivating the surfaces of silicon to reduce optical absorption in the 1500-nm wavelength band. Surface-sensitive test structures consisting of microdisk resonators are fabricated for this purpose. Based on previous work in silicon photovoltaics, coatings of SiNx and SiO2 are applied under varying deposition and annealing conditions. A short dry thermal oxidation followed by a long high-temperature N2 anneal is found to be most effective at long-term encapsulation and reduction of interface absorption. Minimization of the optical loss is attributed to simultaneous reduction in sub-bandgap silicon surface states and hydrogen in the capping material.Comment: 4 pages, 3 figure

    Crossing the race divide : interracial sex in antebellum Savannah

    Get PDF
    This article explores the social significance of inter-racial sexual contact in an antebellum Southern city. How did inter-racial sex challenge the established social hierarchy in Savannah? Was it a controversial issue, viewed as a threat to the social order, or was it accepted as an inevitable evil resulting from a mixed population residing in close proximity

    An optical fiber-taper probe for wafer-scale microphotonic device characterization

    Get PDF
    A small depression is created in a straight optical fiber taper to form a local probe suitable for studying closely spaced, planar microphotonic devices. The tension of the "dimpled" taper controls the probe-sample interaction length and the level of noise present during coupling measurements. Practical demonstrations with high-Q silicon microcavities include testing a dense array of undercut microdisks (maximum Q = 3.3x10^6) and a planar microring (Q = 4.8x10^6).Comment: 8 pages, 5 figures, for high-res version see http://copilot.caltech.edu/publications/index.ht

    Mechanical On-Chip Microwave Circulator

    Get PDF
    Nonreciprocal circuit elements form an integral part of modern measurement and communication systems. Mathematically they require breaking of time-reversal symmetry, typically achieved using magnetic materials and more recently using the quantum Hall effect, parametric permittivity modulation or Josephson nonlinearities. Here, we demonstrate an on-chip magnetic-free circulator based on reservoir engineered optomechanical interactions. Directional circulation is achieved with controlled phase-sensitive interference of six distinct electro-mechanical signal conversion paths. The presented circulator is compact, its silicon-on-insulator platform is compatible with both superconducting qubits and silicon photonics, and its noise performance is close to the quantum limit. With a high dynamic range, a tunable bandwidth of up to 30 MHz and an in-situ reconfigurability as beam splitter or wavelength converter, it could pave the way for superconducting qubit processors with integrated and multiplexed on-chip signal processing and readout.Comment: References have been update

    Design of photonic crystal microcavities for cavity QED

    Get PDF
    We discuss the optimization of optical microcavity designs based on 2D photonic crystals for the purpose of strong coupling between the cavity field and a single neutral atom trapped within a hole. We present numerical predictions for the quality factors and mode volumes of localized defect modes as a function of geometric parameters, and discuss some experimental challenges related to the coupling of a defect cavity to gas-phase atoms.Comment: 12 pages, 16 figure
    corecore