4,659 research outputs found
Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics
The ability to achieve near lossless coupling between a waveguide and a resonator is fundamental to many quantum-optical studies as well as to practical applications of such structures. The nature of loss at the junction is described by a figure of merit called ideality. It is shown here that under appropriate conditions ideality in excess of 99.97% is possible using fiber-taper coupling to high-Q silica microspheres. To verify this level of coupling, a technique is introduced that can both measure ideality over a range of coupling strengths and provide a practical diagnostic of parasitic coupling within the fiber-taper-waveguide junction
Photonic Crystal Nanocavities and Waveguides
Fabrication of optical structures has evolved to a precision which allows us to control light within etched nanostructures. Nano-optic cavities can be used for efficient and flexible concentration of light in small volumes, and control over both emission wavelength and frequency. Conversely, if a periodic pattern is defined in the top semitransparent metal layer by lithography, it is possible to efficiently couple out the light out of a semiconductor and to simultaneously enhance the spontaneous emission rate. Here we demonstrate the use of photonic crystals for efficient light localization and light extraction
Photonic Crystals and their Applications to Efficient Light Emitters
When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic bandgap mirrors provide us with the geometries needed to confine and concentrate light into extremely small volumes and to obtain very high field intensities. Fabrication of optical structures has now evolved to a precision which allows us to control light within such etched nanostructures. Sub-wavelength nano-optic cavities can be used for efficient and flexible control over both emission wavelength and frequency, and nanofabricated optical waveguides can be used for efficient coupling of light between devices. The reduction of the size of optical components leads to their integration in large numbers and the possibility to combine different functionalities on a single chip. We show uses of such crystals in functional nonlinear optical devices, such as lasers, modulators, add/drop filters, polarizers and detectors
Surface Encapsulation for Low-Loss Silicon Photonics
Encapsulation layers are explored for passivating the surfaces of silicon to
reduce optical absorption in the 1500-nm wavelength band. Surface-sensitive
test structures consisting of microdisk resonators are fabricated for this
purpose. Based on previous work in silicon photovoltaics, coatings of SiNx and
SiO2 are applied under varying deposition and annealing conditions. A short dry
thermal oxidation followed by a long high-temperature N2 anneal is found to be
most effective at long-term encapsulation and reduction of interface
absorption. Minimization of the optical loss is attributed to simultaneous
reduction in sub-bandgap silicon surface states and hydrogen in the capping
material.Comment: 4 pages, 3 figure
Crossing the race divide : interracial sex in antebellum Savannah
This article explores the social significance of inter-racial sexual contact in an antebellum Southern city. How did inter-racial sex challenge the established social hierarchy in Savannah? Was it a controversial issue, viewed as a threat to the social order, or was it accepted as an inevitable evil resulting from a mixed population residing in close proximity
An optical fiber-taper probe for wafer-scale microphotonic device characterization
A small depression is created in a straight optical fiber taper to form a
local probe suitable for studying closely spaced, planar microphotonic devices.
The tension of the "dimpled" taper controls the probe-sample interaction length
and the level of noise present during coupling measurements. Practical
demonstrations with high-Q silicon microcavities include testing a dense array
of undercut microdisks (maximum Q = 3.3x10^6) and a planar microring (Q =
4.8x10^6).Comment: 8 pages, 5 figures, for high-res version see
http://copilot.caltech.edu/publications/index.ht
Mechanical On-Chip Microwave Circulator
Nonreciprocal circuit elements form an integral part of modern measurement
and communication systems. Mathematically they require breaking of
time-reversal symmetry, typically achieved using magnetic materials and more
recently using the quantum Hall effect, parametric permittivity modulation or
Josephson nonlinearities. Here, we demonstrate an on-chip magnetic-free
circulator based on reservoir engineered optomechanical interactions.
Directional circulation is achieved with controlled phase-sensitive
interference of six distinct electro-mechanical signal conversion paths. The
presented circulator is compact, its silicon-on-insulator platform is
compatible with both superconducting qubits and silicon photonics, and its
noise performance is close to the quantum limit. With a high dynamic range, a
tunable bandwidth of up to 30 MHz and an in-situ reconfigurability as beam
splitter or wavelength converter, it could pave the way for superconducting
qubit processors with integrated and multiplexed on-chip signal processing and
readout.Comment: References have been update
Design of photonic crystal microcavities for cavity QED
We discuss the optimization of optical microcavity designs based on 2D
photonic crystals for the purpose of strong coupling between the cavity field
and a single neutral atom trapped within a hole. We present numerical
predictions for the quality factors and mode volumes of localized defect modes
as a function of geometric parameters, and discuss some experimental challenges
related to the coupling of a defect cavity to gas-phase atoms.Comment: 12 pages, 16 figure
- …