442 research outputs found

    A Flexible Privacy-preserving Framework for Singular Value Decomposition under Internet of Things Environment

    Full text link
    The singular value decomposition (SVD) is a widely used matrix factorization tool which underlies plenty of useful applications, e.g. recommendation system, abnormal detection and data compression. Under the environment of emerging Internet of Things (IoT), there would be an increasing demand for data analysis to better human's lives and create new economic growth points. Moreover, due to the large scope of IoT, most of the data analysis work should be done in the network edge, i.e. handled by fog computing. However, the devices which provide fog computing may not be trustable while the data privacy is often the significant concern of the IoT application users. Thus, when performing SVD for data analysis purpose, the privacy of user data should be preserved. Based on the above reasons, in this paper, we propose a privacy-preserving fog computing framework for SVD computation. The security and performance analysis shows the practicability of the proposed framework. Furthermore, since different applications may utilize the result of SVD operation in different ways, three applications with different objectives are introduced to show how the framework could flexibly achieve the purposes of different applications, which indicates the flexibility of the design.Comment: 24 pages, 4 figure

    Secure biometric authentication with improved accuracy

    Get PDF
    We propose a new hybrid protocol for cryptographically secure biometric authentication. The main advantages of the proposed protocol over previous solutions can be summarised as follows: (1) potential for much better accuracy using different types of biometric signals, including behavioural ones; and (2) improved user privacy, since user identities are not transmitted at any point in the protocol execution. The new protocol takes advantage of state-of-the-art identification classifiers, which provide not only better accuracy, but also the possibility to perform authentication without knowing who the user claims to be. Cryptographic security is based on the Paillier public key encryption scheme

    Private Outsourced Kriging Interpolation

    Get PDF

    Confidential Boosting with Random Linear Classifiers for Outsourced User-generated Data

    Full text link
    User-generated data is crucial to predictive modeling in many applications. With a web/mobile/wearable interface, a data owner can continuously record data generated by distributed users and build various predictive models from the data to improve their operations, services, and revenue. Due to the large size and evolving nature of users data, data owners may rely on public cloud service providers (Cloud) for storage and computation scalability. Exposing sensitive user-generated data and advanced analytic models to Cloud raises privacy concerns. We present a confidential learning framework, SecureBoost, for data owners that want to learn predictive models from aggregated user-generated data but offload the storage and computational burden to Cloud without having to worry about protecting the sensitive data. SecureBoost allows users to submit encrypted or randomly masked data to designated Cloud directly. Our framework utilizes random linear classifiers (RLCs) as the base classifiers in the boosting framework to dramatically simplify the design of the proposed confidential boosting protocols, yet still preserve the model quality. A Cryptographic Service Provider (CSP) is used to assist the Cloud's processing, reducing the complexity of the protocol constructions. We present two constructions of SecureBoost: HE+GC and SecSh+GC, using combinations of homomorphic encryption, garbled circuits, and random masking to achieve both security and efficiency. For a boosted model, Cloud learns only the RLCs and the CSP learns only the weights of the RLCs. Finally, the data owner collects the two parts to get the complete model. We conduct extensive experiments to understand the quality of the RLC-based boosting and the cost distribution of the constructions. Our results show that SecureBoost can efficiently learn high-quality boosting models from protected user-generated data

    Privacy-Preserving Trust Management Mechanisms from Private Matching Schemes

    Full text link
    Cryptographic primitives are essential for constructing privacy-preserving communication mechanisms. There are situations in which two parties that do not know each other need to exchange sensitive information on the Internet. Trust management mechanisms make use of digital credentials and certificates in order to establish trust among these strangers. We address the problem of choosing which credentials are exchanged. During this process, each party should learn no information about the preferences of the other party other than strictly required for trust establishment. We present a method to reach an agreement on the credentials to be exchanged that preserves the privacy of the parties. Our method is based on secure two-party computation protocols for set intersection. Namely, it is constructed from private matching schemes.Comment: The material in this paper will be presented in part at the 8th DPM International Workshop on Data Privacy Management (DPM 2013

    Using Trusted Execution Environments for Secure Stream Processing of Medical Data

    Full text link
    Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models.Comment: 19th International Conference on Distributed Applications and Interoperable System

    Flexible and Robust Privacy-Preserving Implicit Authentication

    Full text link
    Implicit authentication consists of a server authenticating a user based on the user's usage profile, instead of/in addition to relying on something the user explicitly knows (passwords, private keys, etc.). While implicit authentication makes identity theft by third parties more difficult, it requires the server to learn and store the user's usage profile. Recently, the first privacy-preserving implicit authentication system was presented, in which the server does not learn the user's profile. It uses an ad hoc two-party computation protocol to compare the user's fresh sampled features against an encrypted stored user's profile. The protocol requires storing the usage profile and comparing against it using two different cryptosystems, one of them order-preserving; furthermore, features must be numerical. We present here a simpler protocol based on set intersection that has the advantages of: i) requiring only one cryptosystem; ii) not leaking the relative order of fresh feature samples; iii) being able to deal with any type of features (numerical or non-numerical). Keywords: Privacy-preserving implicit authentication, privacy-preserving set intersection, implicit authentication, active authentication, transparent authentication, risk mitigation, data brokers.Comment: IFIP SEC 2015-Intl. Information Security and Privacy Conference, May 26-28, 2015, IFIP AICT, Springer, to appea

    Peer-to-Peer Secure Multi-Party Numerical Computation Facing Malicious Adversaries

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and other tasks, where the computing nodes is expected to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we try to bridge the gap between theoretical algorithms in the security domain, and a practical Peer-to-Peer deployment. We consider two security models. The first is the semi-honest model where peers correctly follow the protocol, but try to reveal private information. We provide three possible schemes for secure multi-party numerical computation for this model and identify a single light-weight scheme which outperforms the others. Using extensive simulation results over real Internet topologies, we demonstrate that our scheme is scalable to very large networks, with up to millions of nodes. The second model we consider is the malicious peers model, where peers can behave arbitrarily, deliberately trying to affect the results of the computation as well as compromising the privacy of other peers. For this model we provide a fourth scheme to defend the execution of the computation against the malicious peers. The proposed scheme has a higher complexity relative to the semi-honest model. Overall, we provide the Peer-to-Peer network designer a set of tools to choose from, based on the desired level of security.Comment: Submitted to Peer-to-Peer Networking and Applications Journal (PPNA) 200

    Optimal non-perfect uniform secret sharing schemes

    Get PDF
    A secret sharing scheme is non-perfect if some subsets of participants that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes. To this end, we extend the known connections between polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information that every subset of participants obtains about the secret value. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, the ones whose values depend only on the number of participants, generalize the threshold access structures. Our main result is to determine the optimal information ratio of the uniform access functions. Moreover, we present a construction of linear secret sharing schemes with optimal information ratio for the rational uniform access functions.Peer ReviewedPostprint (author's final draft
    • …
    corecore