297 research outputs found

    Subduction and volcanism in the Iberia-North Africa collision zone from tomographic images of the upper mantle

    Get PDF
    New tomographic images of the upper mantle beneath the westernmost Mediterranean suggest that the evolution of the region experienced two subduction-related episodes. First subduction of oceanic and/or extended continental lithosphere, now located mainly beneath the Betics at depths greater than 400 km, took place on a NW-SE oriented subduction zone. This was followed by a slab-tear process that initiated in the east and propagated to the west, leading to westward slab rollback and possibly lower crustal delamination. The current position of the slab tear is located approximately at 4°W, and to the west of this location the subducted lithosphere is still attached to the surface along the Gibraltar Arc. Our new P-wave velocity model is able to image the attached subducted lithosphere as a narrow high-velocity body extending to shallow depths, coinciding with the region of maximum curvature of the Gibraltar Arc, the occurrence of intermediate-depth earthquakes, and anomalously thick crust. This thick crust has a large influence in the measured teleseismic travel time residuals and therefore in the obtained P-wave tomographic model. We show that removing the effects of the thick crust significantly improves the shallow images of the slab and therefore the interpretations based on the seismic structureThis is a contribution of the Team Consolider-Ingenio 2010 TOPO-IBERIA (CSD2006-00041). Additional fundingwas provided by the SIBERIA (CGL2006-01171), RIFSIS (CGL2009-09727) and ALERTES-RIM (CGL2013-45724-C3-3-R) projects.Peer reviewe

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s = 8 TeV with the ATLAS detector (vol 75, 299, 2015)

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √s=8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s = 8 TeV with the ATLAS detector (vol 75, 299, 2015)

    Get PDF

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio

    Measurement of the branching ratio Γ(Λb⁰ → ψ(2S)Λ0)/Γ(Λb⁰ → J/ψΛ0) with the ATLAS detector

    Get PDF
    An observation of the Λb0ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 decay and a comparison of its branching fraction with that of the Λb0J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decay has been made with the ATLAS detector in proton--proton collisions at s=8\sqrt{s}=8\,TeV at the LHC using an integrated luminosity of 20.620.6\,fb1^{-1}. The J/ψJ/\psi and ψ(2S)\psi(2S) mesons are reconstructed in their decays to a muon pair, while the Λ0pπ\Lambda^0\rightarrow p\pi^- decay is exploited for the Λ0\Lambda^0 baryon reconstruction. The Λb0\Lambda_b^0 baryons are reconstructed with transverse momentum pT>10p_{\rm T}>10\,GeV and pseudorapidity η<2.1|\eta|<2.1. The measured branching ratio of the Λb0ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 and Λb0J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decays is Γ(Λb0ψ(2S)Λ0)/Γ(Λb0J/ψΛ0)=0.501±0.033(stat)±0.019(syst)\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \rightarrow J/\psi\Lambda^0) = 0.501\pm 0.033 ({\rm stat})\pm 0.019({\rm syst}), lower than the expectation from the covariant quark model.Comment: 12 pages plus author list (28 pages total), 5 figures, 1 table, published on Physics Letters B 751 (2015) 63-80. All figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-08

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for anomalous couplings in the W tb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector

    Get PDF
    The electroweak production and subsequent decay of single top quarks is determined by the properties of the Wtb vertex. This vertex can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the t -channel constrains these parameters simultaneously. The analysis described in this paper uses 4.6 fb−1 of proton-proton collision data at √s =7 TeV collected with the ATLAS detector at the LHC. Two parameters are measured simultaneously in this analysis. The fraction f 1 of decays containing transversely polarised W bosons is measured to be 0.37 ± 0.07 (stat.⊕syst.). The phase δ − between amplitudes for transversely and longitudinally polarised W bosons recoiling against left-handed b-quarks is measured to be −0.014π ± 0.036π (stat.⊕syst.). The correlation in the measurement of these parameters is 0.15. These values result in two-dimensional limits at the 95% confidence level on the ratio of the complex coupling parameters g R and V L, yielding Re[g R /V L] ∈ [−0.36, 0.10] and Im[g R /V L] ∈ [−0.17, 0.23] with a correlation of 0.11. The results are in good agreement with the predictions of the Standard Model

    Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search is performed for narrow resonances decaying into WW, WZ, or ZZ boson pairs using 20.3 fb−1 of proton-proton collision data at a centre-of-mass energy of √s=8 TeV recorded with the ATLAS detector at the Large Hadron Collider. Diboson resonances with masses in the range from 1.3 to 3.0 TeV are sought after using the invariant mass distribution of dijets where both jets are tagged as a boson jet, compatible with a highly boosted W or Z boson decaying to quarks, using jet mass and substructure properties. The largest deviation from a smoothly falling background in the observed dijet invariant mass distribution occurs around 2 TeV in the WZ channel, with a global significance of 2.5 standard deviations. Exclusion limits at the 95% confidence level are set on the production cross section times branching ratio for the WZ final state of a new heavy gauge boson, W′, and for the WW and ZZ final states of Kaluza-Klein excitations of the graviton in a bulk Randall-Sundrum model, as a function of the resonance mass. W′ bosons with couplings predicted by the extended gauge model in the mass range from 1.3 to 1.5 TeV are excluded at 95% confidence level

    Anatomy of the sign-problem in heavy-dense QCD

    Get PDF
    QCD at finite densities of heavy quarks is investigated using the density-of-states method. The phase factor expectation value of the quark determinant is calculated to unprecedented precision as a function of the chemical potential. Results are validated using those from a reweighting approach where the latter can produce a significant signalto-noise ratio. We confirm the particle–hole symmetry at low temperatures, find a strong sign problem at intermediate values of the chemical potential, and an inverse Silver Blaze feature for chemical potentials close to the onset value: here, the phase-quenched theory underestimates the density of the full theory

    Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for a high-mass Higgs boson H is performed in the H → WW → ℓνℓν and H → WW → ℓνqq decay channels using pp collision data corresponding to an integrated luminosity of 20.3 fb−¹ collected at √s = 8 TeV by the ATLAS detector at the Large Hadron Collider. No evidence of a high-mass Higgs boson is found. Limits on σH × BR(H → WW) as a function of the Higgs boson mass mH are determined in three different scenarios: one in which the heavy Higgs boson has a narrow width compared to the experimental resolution, one for a width increasing with the boson mass and modeled by the complex-pole scheme following the same behavior as in the Standard Model, and one for intermediate widths. The upper range of the search is mH = 1500 GeV for the narrow-width scenario and mH = 1000 GeV for the other two scenarios. The lower edge of the search range is 200–300 GeV and depends on the analysis channel and search scenario. For each signal interpretation, individual and combined limits from the two WW decay channels are presented. At mH = 1500 GeV, the highest-mass point tested, σH × BR(H → WW) for a narrow-width Higgs boson is constrained to be less than 22 fb and 6.6 fb at 95% CL for the gluon fusion and vector-boson fusion production modes, respectively
    corecore