429 research outputs found
CO adsorption on metal surfaces: a hybrid functional study with plane wave basis set
We present a detailed study of the adsorption of CO on Cu, Rh, and Pt (111)
surfaces in top and hollow sites. The study has been performed using the local
density approximation, the gradient corrected functional PBE, and the hybrid
Hartree-Fock density functionals PBE0 and HSE03 within the framework of
generalized Kohn-Sham density functional theory using a plane-wave basis set.
As expected, the LDA and GGA functionals show a tendency to favor the hollow
sites, at variance with experimental findings that give the top site as the
most stable adsorption site. The PBE0 and HSE03 functionals reduce this
tendency. In fact, they predict the correct adsorption site for Cu and Rh but
fail for Pt. But even in this case, the hybrid functional destabilizes the
hollow site by 50 meV compared to the PBE functional. The results of the total
energy calculations are presented along with an analysis of the projected
density of states.Comment: 32 pages, 6 tables, 3 figures. (Re)Submitted to Phys. Rev. B; LDA
results added in the tables; minor changes in the tex
Elucidating Surface Structure with Action Spectroscopy
Surface Action Spectroscopy, a vibrational spectroscopy method developed in recent years at the Fritz Haber Institute is employed for structure determination of clean and H2O-dosed (111) magnetite surfaces. Surface structural information is revealed by using the microscopic surface vibrations as a fingerprint of the surface structure. Such vibrations involve just the topmost atomic layers, and therefore the structural information is truly surface related. Our results strongly support the view that regular Fe3O4(111)/Pt(111) is terminated by the so-called Fetet1 termination, that the biphase termination of Fe3O4(111)/Pt(111) consists of FeO and Fe3O4(111) terminated areas, and we show that the method can differentiate between different water structures in H2O-derived adsorbate layers on Fe3O4(111)/Pt(111). With this, we conclude that the method is a capable new member in the set of techniques providing crucial information to elucidate surface structures. The method does not rely on translational symmetry and can therefore also be applied to systems which are not well ordered. Even an application to rough surfaces is possible
Reduction and oxidation of Au adatoms on the CeO2(111) surface - DFT plus U versus hybrid functionals
Recently we showed that Au atoms may titrate Ce3+ ions in near-surface layers of reduced CeO2(111). This surface contained oxygen vacancies in subsurface position within the topmost O–Ce–O trilayer [Pan et al., Phys. Rev. Lett., 2013, 111, 206101.]. The present work builds upon these findings and discusses additional results obtained using PBE+U and hybrid functionals. These approaches do not predict the same relative stabilities for the various adsorption sites of a single Au adatom at an O-defect concentration of a ¼ ML or 1.984 nm−2. We attribute this discrepancy to a different alignment within the O 2p–Ce 4f gap, i.e. a different order by energy of partially occupied Ce 4f and Au 6s orbitals. The energy offset of these orbitals matters, because the adsorption of Au0(6s1) atop Ce3+(4f1) or atop a subsurface oxygen atom in the first coordination shell of a Ce3+(4f1) involves creation of Au−(6s2) and Ce4+(4f0) ions. The electron transfer to Au is coupled to stabilizing ionic relaxation in the lattice, commonly known as polaronic distortion, reinforcing the Au–Ce bond. The order of 4f and 6s orbitals depends on the density functional approximation and is also strongly influenced by the oxygen defect concentration
Titration of Ce<sup>3+</sup> Ions in the CeO<sub>2</sub>(111) Surface by Au Adatoms
The role of surface and subsurface O vacancies for gold adsorption on crystalline CeO2(111) films has been investigated by scanning tunneling microscopy and density functional theory. Whereas surface vacancies serve as deep traps for the Au atoms, subsurface defects promote the formation of characteristic Au pairs with a mean atom distance of two ceria lattice constants (7.6 Å). Hybrid density functional theory calculations reveal that the pair formation arises from a titration of the two Ce3+ ions generated by a single O vacancy. The Au-Ce3+ bond forms due to a strain effect, as the associated charge transfer from the spacious Ce3+ into the adgold enables a substantial relaxation of the ceria lattice. Also the experimentally determined Au-pair length is reproduced in the calculations, as we find a Ce3+-Ce3+ spacing of two ceria lattice parameters to be energetically preferred. Single Au atoms can thus be taken as position markers for Ce3+ ion pairs in the surface, providing unique information on electron-localization phenomena in reduced ceria
Resolving atomic diffusion in Ru(0001)-O(2×2) with spiral high-speed scanning tunneling microscopy
An intermediate state in atomic diffusion processes in the O(2×2) layer on Ru(0001) is resolved with spiral high-speed scanning tunneling microscopy (STM). The diffusion of atomic oxygen in the adlayer has been studied by density functional theory and STM. Transition state theory proposes a migration pathway for the diffusion in the oxygen adlayer. With spiral scan geometries—a new approach to high-speed STM—the oxygen vacancy mobility on the highly covered Ru(0001) surface is determined to be in the range of 0.1 to 1 Hz. Experimental evidence for the intermediate state along the oxygen diffusion pathway is provided in real space and real time
Dynamics in the O(2 × 1) adlayer on Ru(0001): bridging timescales from milliseconds to minutes by scanning tunneling microscopy
The dynamics within an O(2 × 1) adlayer on Ru(0001) is studied by density functional theory and high-speed scanning tunneling microscopy. Transition state theory proposes dynamic oxygen species in the reduced O(2 × 1) layer at room temperature. Collective diffusion processes can result in structural reorientations of characteristic stripe patterns. Spiral high-speed scanning tunneling microscopy measurements reveal this reorientation as a function of time in real space. Measurements, ranging over several minutes with constantly high frame rates of 20 Hz resolved the gradual reorientation. Moreover, reversible fast flipping events of stripe patterns are observed. These measurements relate the observations of long-term atomic rearrangements and their underlying fast processes captured within several tens of milliseconds
L-type calcium channel blockers and substance P induce angiogenesis of cortical vessels associated with beta-amyloid plaques in an Alzheimer mouse model
AbstractIt is well established that L-type calcium channels (LTCCs) are expressed in astroglia. However, their functional role is still speculative, especially under pathologic conditions. We recently showed that the α1 subunit-like immunoreactivity of the CaV1.2 channel is strongly expressed in reactive astrocytes around beta-amyloid plaques in 11-month-old Alzheimer transgenic (tg) mice with the amyloid precursor protein London and Swedish mutations. The aim of the present study was to examine the cellular expression of all LTCC subunits around beta-amyloid plaques by in situ hybridization using 35S-labeled oligonucleotides. Our data show that messenger RNAs (mRNAs) of the LTCC CaV1.2 α1 subunit as well as all auxiliary β and α2δ subunits, except α2δ-4, were expressed in the hippocampus of age-matched wild-type mice. It was unexpected to see, that cells directly located in the plaque core in the cortex expressed mRNAs for CaV1.2 α1, β2, β4, and α2δ-1, whereas no expression was detected in the halo. Furthermore, cells in the plaque core also expressed preprotachykinin-A mRNA, the precursor for substance P. By means of confocal microscopy, we demonstrated that collagen-IV-stained brain vessels in the cortex were associated with the plaque core and were immunoreactive for substance P. In cortical organotypic brain slices of adult Alzheimer mice, we could demonstrate that LTCC blockers increased angiogenesis, which was further potentiated by substance P. In conclusion, our data show that brain vessels associated with beta-amyloid plaques express substance P and an LTCC and may play a role in angiogenesis
Structure and registry of the silica bilayer film on Ru(0001) as viewed by LEED and DFT
Silica bilayers are stable on various metal substrates, including Ru(0001) that is used for the present study. In a systematic attempt to elucidate the detailed structure of the silica bilayer film and its registry to the metal substrate, we performed a low energy electron diffraction (I/V-LEED) study. The experimental work is accompanied by detailed calculations on the stability, orientation and dynamic properties of the bilayer at room temperature. It was determined, that the film shows a certain structural diversity within the unit cell of the metal substrate, which depends on the oxygen content at the metal-bilayer interface. In connection with the experimental I/V-LEED study, it became apparent, that a high-quality structure determination is only possible if several structural motifs are taken into account by superimposing bilayer structures with varying registry to the oxygen covered substrate. This result is conceptually in line with the recently observed statistical registry in layered 2D-compound materials
Assessing the Performance of Recent Density Functionals for Bulk Solids
We assess the performance of recent density functionals for the
exchange-correlation energy of a nonmolecular solid, by applying accurate
calculations with the GAUSSIAN, BAND, and VASP codes to a test set of 24 solid
metals and non-metals. The functionals tested are the modified
Perdew-Burke-Ernzerhof generalized gradient approximation (PBEsol GGA), the
second-order GGA (SOGGA), and the Armiento-Mattsson 2005 (AM05) GGA. For
completeness, we also test more-standard functionals: the local density
approximation, the original PBE GGA, and the Tao-Perdew-Staroverov-Scuseria
(TPSS) meta-GGA. We find that the recent density functionals for solids reach a
high accuracy for bulk properties (lattice constant and bulk modulus). For the
cohesive energy, PBE is better than PBEsol overall, as expected, but PBEsol is
actually better for the alkali metals and alkali halides. For fair comparison
of calculated and experimental results, we consider the zero-point phonon and
finite-temperature effects ignored by many workers. We show how Gaussian basis
sets and inaccurate experimental reference data may affect the rating of the
quality of the functionals. The results show that PBEsol and AM05 perform
somewhat differently from each other for alkali metal, alkaline earth metal and
alkali halide crystals (where the maximum value of the reduced density gradient
is about 2), but perform very similarly for most of the other solids (where it
is often about 1). Our explanation for this is consistent with the importance
of exchange-correlation nonlocality in regions of core-valence overlap.Comment: 32 pages, single pdf fil
- …