3 research outputs found

    Neon, sulphur and argon abundances of planetary nebulae in the sub-solar metallicity Galactic anti-centre

    Get PDF
    Context: Spectra of planetary nebulae show numerous fine structure emission lines from ionic species, enabling us to study the overall abundances of the nebular material that is ejected into the interstellar medium. The abundances derived from planetary nebula emission show the presence of a metallicity gradient within the disk of the Milky Way up to Galactocentric distances of ∼ 10 kpc, which are consistent with findings from studies of different types of sources, including H II regions and young B-type stars. The radial dependence of these abundances further from the Galactic centre is in dispute. Aims: We aim to derive the abundances of neon, sulphur and argon from a sample of planetary nebulae towards the Galactic anti- centre, which represent the abundances of the clouds from which they were formed, as they remain unchanged throughout the course of stellar evolution. We then aim to compare these values with similarly analysed data from elsewhere in the Milky Way in order to observe whether the abundance gradient continues in the outskirts of our Galaxy. Methods: We have observed 23 planetary nebulae at Galactocentric distances of 8–21 kpc with Spitzer IRS. The abundances were calculated from infrared emission lines, for which we observed the main ionisation states of neon, sulphur, and argon, which are little affected by extinction and uncertainties in temperature measurements or fluctuations within the planetary nebula. We have complemented these observations with others from optical studies in the literature, in order to reduce or avoid the need for ionisation correction factors in abundance calculations. Results: The overall abundances of our sample of planetary nebulae in the Galactic anti-centre are lower than those in the solar neighbourhood. The abundances of neon, sulphur, and argon from these stars are consistent with a metallicity gradient from the solar neighbourhood up to Galactocentric distances of ∼ 20 kpc, albeit with varying degrees of dispersion within the data

    Dust & Abundances of Metal-Poor Planetary Nebulae in the Galactic Anti-Center

    No full text
    Much of the new dust in the local ISM is produced in the last phases of stellar evolution of low- and intermediate-mass stars on the Asymptotic Giant Branch (AGB). Despite its importance, our knowledge of how dust properties depend on metallicity is limited. Studies of planetary nebulae in irregular galaxies in the Local Group (mostly focused on the LMC and SMC) have revealed a diverse spectral zoo and shown that low metallicity favours carbon-rich dust production by AGB stars. However, at ~1/3 and ~1/5 times the solar metallicity respectively, they provide two snapshots of dust composition at low metallicity, emphasising the need to investigate a region with a range of metallicity values. With its abundance gradient, the Milky Way fits this criterion and provides a good opportunity to observe the dust composition over a large metallicity range. In particular the Galactic anti-center, which is largely unexplored beyond galactocentric distances of 10 kpc, allows us to study the AGB dust a priori assumed to be metal-poor as well as exploring the extent of the Galactic abundance gradient. We analyse a Spitzer spectroscopic sample of 23 planetary nebulae towards the anti-center in order to understand how the metallicity gradient extends beyond 10 kpc from the Galactic center and to observe the dust composition in this region of our Galaxy. We find that the abundance gradients of Ne, S and Ar continue to distances of around 20 kpc (albeit with a large scatter) and the dust emission shows a carbon-rich chemistry similar to that in the Magellanic Clouds
    corecore