42 research outputs found

    Spin-trapping agent α-phenyl N-tert-butylnitrone binds to trypsin and enhances heparin-induced inhibition of amidolytic activity and structural degradation of the enzyme

    Get PDF
    AbstractThe effects of heparin on trypsin have recently been demonstrated to involve inhibition of catalytic activity and degradation of the enzyme by means of an oxidative mechanism. The possibility that α-phenyl N-tert-butylnitrone protects heparin-induced radical formation on trypsin was investigated by measuring amidolytic activity and changes in the structure of trypsin in the presence of heparin with and without α-phenyl N-tert-butylnitrone. The results show that α-phenyl N-tert-butylnitrone does not only prevent, but it even significantly enhances effects of heparin on the enzyme. This is due to the unique property of α-phenyl N-tert-butylnitrone, independently of spin-trapping capacity, to modify the trypsin structure by binding irreversibly to the catalytic triad, at sites distinct from those to which heparin binds

    Curcumin Prevents Acute Neuroinflammation and Long-Term Memory Impairment Induced by Systemic Lipopolysaccharide in Mice

    Get PDF
    Systemic lipopolysaccharide (LPS) induces an acute inflammatory response in the central nervous system (CNS) (\u201cneuroinflammation\u201d) characterized by altered functions of microglial cells, the major resident immune cells of the CNS, and an increased inflammatory profile that can result in long-term neuronal cell damage and severe behavioral and cognitive consequences. Curcumin, a natural compound, exerts CNS anti-inflammatory and neuroprotective functions mainly after chronic treatment. However, its effect after acute treatment has not been well investigated. In the present study, we provide evidence that 50 mg/kg of curcumin, orally administered for 2 consecutive days before a single intraperitoneal injection of a high dose of LPS (5 mg/kg) in young adult mice prevents the CNS immune response. Curcumin, able to enter brain tissue in biologically relevant concentrations, reduced acute and transient microglia activation, pro-inflammatory mediator production, and the behavioral symptoms of sickness. In addition, short-term treatment with curcumin, administered at the time of LPS challenge, anticipated the recovery from memory impairments observed 1 month after the inflammatory stimulus, when mice had completely recovered from the acute neuroinflammation. Together, these results suggest that the preventive effect of curcumin in inhibiting the acute effects of neuroinflammation could be of value in reducing the long-term consequences of brain inflammation, including cognitive deficits such as memory dysfunction

    Live applications of norbormide-based fluorescent probes in Drosophila melanogaster

    Get PDF
    In this study we investigated the performance of two norbormide (NRB)-derived fluorescent probes, NRBMC009 (green) and NRBZLW0047 (red), on dissected, living larvae of Drosophila, to verify their potential application in confocal microscopy imaging in vivo. To this end, larval tissues were exposed to NRB probes alone or in combination with other commercial dyes or GFP-tagged protein markers. Both probes were rapidly internalized by most tissues (except the central nervous system) allowing each organ in the microscope field to be readily distinguished at low magnification. At the cellular level, the probes showed a very similar distribution (except for fat bodies), defined by loss of signal in the nucleus and plasma membrane, and a preferential localization to endoplasmic reticulum (ER) and mitochondria. They also recognized ER and mitochondrial phenotypes in the skeletal muscles of fruit fly models that had loss of function mutations in the atlastin and mitofusin genes, suggesting NRBMC009 and NRBZLW0047 as potentially useful in vivo screening tools for characterizing ER and mitochondria morphological alterations. Feeding of larvae and adult Drosophilae with the NRB-derived dyes led to staining of the gut and its epithelial cells, revealing a potential role in food intake assays. In addition, when flies were exposed to either dye over their entire life cycle no apparent functional or morphological abnormalities were detected. Rapid internalization, a bright signal, a compatibility with other available fluorescent probes and GFP-tagged protein markers, and a lack of toxicity make NRBZLW0047 and, particularly, NRBMC009 one of the most highly performing fluorescent probes available for in vivo microscopy studies and food intake assay in Drosophila
    corecore