30 research outputs found

    Assessing the Role of Carbonyl Adducts, Particularly Malondialdehyde Adducts, in the Development of Dermis Yellowing Occurring during Skin Photoaging

    Get PDF
    Solar elastosis is associated with a diffuse yellow hue of the skin. Photoaging is related to lipid peroxidation leading to the formation of carbonyl groups. Protein carbonylation can occur by addition of reactive aldehydes, such as malondialdehyde (MDA), 4-hydroxy-nonenal (4-HNE), and acrolein. All the proteins concerned with this modification, and the biological consequences of adduct formation, are not completely identified. The link between yellowish skin and dermal carbonylated proteins induced by aldehyde adducts was investigated. The study was carried out on ex vivo skin samples from sun-exposed or sun-protected areas and on in vitro dermal equivalent models incubated with 5 mM MDA, 4-HNE, or acrolein. The yellow color and the level of MDA, 4-HNE, and acrolein adducts were evaluated. Yellowish color differences were detected in the dermis of sun-exposed skin compared to sun-protected skin and in in vitro models following addition of MDA, 4-HNE, or acrolein. The yellowing was correlated with the carbonyl adducts increasing in the dermis and in in vitro models incubated with aldehydes. The stronger yellowing seemed to be mediated more by MDA than 4-HNE and acrolein. These observations suggest that dermal carbonylation especially induced by MDA result in the yellow hue of dermis and is involved, in part, in the yellowing observed during skin photoaging

    Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages

    Get PDF
    Signal integration between activating Fc receptors and inhibitory signal regulatory protein α (SIRPα) controls macrophage phagocytosis. Here, using dual-color direct stochastic optical reconstruction microscopy, we report that Fcγ receptor I (FcγRI), FcγRII, and SIRPα are not homogeneously distributed at macrophage surfaces but are organized in discrete nanoclusters, with a mean radius of 71 ± 11 nm, 60 ± 6 nm, and 48 ± 3 nm, respectively. Nanoclusters of FcγRI, but not FcγRII, are constitutively associated with nanoclusters of SIRPα, within 62 ± 5 nm, mediated by the actin cytoskeleton. Upon Fc receptor activation, Src-family kinase signaling leads to segregation of FcγRI and SIRPα nanoclusters to be 197 ± 3 nm apart. Co-ligation of SIRPα with CD47 abrogates nanocluster segregation. If the balance of signals favors activation, FcγRI nanoclusters reorganize into periodically spaced concentric rings. Thus, a nanometer- and micron-scale reorganization of activating and inhibitory receptors occurs at the surface of human macrophages concurrent with signal integration

    Preparation of a three-dimensional full thickness skin equivalent

    No full text
    In vitro test systems are a promising alternative to animal models. Due to the use of human cells in a three-dimensional arrangement that allows cell–cell or cell–matrix interactions these models may be more predictive for the human situation compared to animal models or two-dimensional cell culture systems. Especially for dermatological research, skin models such as epidermal or full-thickness skin equivalents (FTSE) are used for different applications. Although epidermal models provide highly standardized conditions for risk assessment, FTSE facilitate a cellular crosstalk between the dermal and epidermal layer and thus can be used as more complex models for the investigation of processes such as wound healing, skin development, or infectious diseases. In this chapter, we describe the generation and culture of an FTSE, based on a collagen type I matrix and provide troubleshooting tips for commonly encountered technical problems
    corecore