127 research outputs found

    Ischemic preconditioning of the muscle reduces the metaboreflex response of the knee extensors

    Get PDF
    Purpose: This study investigated the effect of ischemic preconditioning (IP) on metaboreflex activation following dynamic leg extension exercise in a group of healthy participants. Method: Seventeen healthy participants were recruited. IP and SHAM treatments (3 × 5 min cuff occlusion at 220 mmHg or 20 mmHg, respectively) were administered in a randomized order to the upper part of exercising leg’s thigh only. Muscle pain intensity (MP) and pain pressure threshold (PPT) were monitored while administrating IP and SHAM treatments. After 3 min of leg extension exercise at 70% of the maximal workload, a post-exercise muscle ischemia (PEMI) was performed to monitor the discharge group III/IV muscle afferents via metaboreflex activation. Hemodynamics were continuously recorded. MP was monitored during exercise and PEMI. Results: IP significantly reduced mean arterial pressure compared to SHAM during metaboreflex activation (mean ± SD, 109.52 ± 7.25 vs. 102.36 ± 7.89 mmHg) which was probably the consequence of a reduced end diastolic volume (mean ± SD, 113.09 ± 14.25 vs. 102.42 ± 9.38 ml). MP was significantly higher during the IP compared to SHAM treatment, while no significant differences in PPT were found. MP did not change during exercise, but it was significantly lower during the PEMI following IP (5.10 ± 1.29 vs. 4.00 ± 1.54). Conclusion: Our study demonstrated that IP reduces hemodynamic response during metaboreflex activation, while no effect on MP and PPT were found. The reduction in hemodynamic response was likely the consequence of a blunted venous return

    Transcranial Direct Current Stimulation Improves Isometric Time to Exhaustion of the Knee Extensors

    Get PDF
    Transcranial direct current stimulation (tDCS) can increase cortical excitability of a targeted brain area, which may affect endurance exercise performance. However, optimal electrode placement for tDCS remains unclear. We tested the effect of two different tDCS electrode montages for improving exercise performance. Nine subjects underwent a control (CON), placebo (SHAM) and two different tDCS montage sessions in a randomized design. In one tDCS session, the anodal electrode was placed over the left motor cortex and the cathodal on contralateral forehead (HEAD), while for the other montage the anodal electrode was placed over the left motor cortex and cathodal electrode above the shoulder (SHOULDER). tDCS was delivered for 10min at 2.0mA, after which participants performed an isometric time to exhaustion (TTE) test of the right knee extensors. Peripheral and central neuromuscular parameters were assessed at baseline, after tDCS application and after TTE. Heart rate (HR), ratings of perceived exertion (RPE), and leg muscle exercise-induced muscle pain (PAIN) were monitored during the TTE. TTE was longer and RPE lower in the SHOULDER condition (P0.05). In all conditions maximal voluntary contraction (MVC) significantly decreased after the TTE (P<0.05) while motor-evoked potential area (MEP) increased after TTE (P<0.05). These findings demonstrate that SHOULDER montage is more effective than HEAD montage to improve endurance performance, likely through avoiding the negative effects of the cathode on excitability

    The Effect of Mental Fatigue on Critical Power during cycling exercise

    Get PDF
    Purpose: Time-to-exhaustion (TTE) tests used in the determination of critical power (CP) and curvature constant (W) of the power-duration relationship are strongly influenced by the perception of effort (PE). This study aimed to investigate whether manipulation of the PE alters the CP and W. Methods: Eleven trained cyclists completed a series of TTE tests to establish CP and W under two conditions, following a mentally fatiguing (MF), or a control (CON) task. Both cognitive tasks lasted 30 min followed by a TTE test. Ratings of PE and heart rate (HR) were measured during each TTE. Blood lactate was taken pre and post each TTE test. Ratings of perceived mental and physical fatigue were taken pre- and post-cognitive task, and following each TTE test. Results: Perceived MF significantly increased as a result of the MF task compared to baseline and the CON task (P0.05). PE was significantly higher during TTE in the MF condition (P0.05). Neither cognitive task induced any change in CP (MF 253±51 vs. CON 247±58W; P>0.05), although W was significantly reduced in the MF condition (MF 2.3±4.5 vs. CON 2.9±6.3kJ; P<0.01). Conclusion: MF has no effect of CP, but reduces the W in trained cyclists. Lower lactate accumulation during TTE tests following MF, suggests that cyclists were not be able to fully expend W even though they exercised to volitional exhaustion

    Eccentric cycling involves greater mental demand and cortical activation of the frontoparietal network

    Get PDF
    Eccentric, compared to concentric exercise, is proposed to involve different neuro-motor processing strategies and a higher level of mental demand. This study compared eccentric and concentric cycling at matched perceived effort and torque for the mental demand and related-cortical activation patterns. Nineteen men (30 ± 6 years) performed four different 5-min cycling conditions at 30 RPM on a semi-recumbent isokinetic cycle ergometer: (1) concentric at a moderate perceived effort (23 on the CR100® scale) without torque feedback; (2) concentric and (3) eccentric at the same average torque produced in the first condition; and (4) eccentric at the same moderate perceived effort than the first concentric condition. The conditions two to four were randomized. After each condition, mental demand was monitored using the NASA Task Load Index scale. Changes in oxy-(O2Hb) and deoxy-(HHb) hemoglobin during exercise were measured over both prefrontal cortices and the right parietal lobe from a 15-probe layout using a continuous-wave NIRS system. Mental demand was significantly higher during eccentric compared to concentric cycling (+52%, p = 0.012) and when the exercise intensity was fixed by the torque rather than the perceived effort (+70%, p < 0.001). For both torque- or perceived effort-matched exercises, O2Hb increased significantly (p < 0.001) in the left and right prefrontal cortices, and right parietal lobe, and HHb decreased in the left, and right, prefrontal cortices during eccentric compared to concentric cycling. This study supports that acute eccentric cycling, compared to concentric cycling, involves a higher mental demand, and frontoparietal network activation

    Why are we not flooded by involuntary thoughts about the past and future? Testing the cognitive inhibition dependency hypothesis

    Get PDF
    © The Author(s) 2018In everyday life, involuntary thoughts about future plans and events occur as often as involuntary thoughts about the past. However, compared to involuntary autobiographical memories (IAMs), such episodic involuntary future thoughts (IFTs) have become a focus of study only recently. The aim of the present investigation was to examine why we are not constantly flooded by IFTs and IAMs given that they are often triggered by incidental cues while performing undemanding activities. One possibility is that activated thoughts are suppressed by the inhibitory control mechanism, and therefore depleting inhibitory control should enhance the frequency of both IFTs and IAMs. We report an experiment with a between-subjects design, in which participants in the depleted inhibition condition performed a 60-min high-conflict Stroop task before completing a laboratory vigilance task measuring the frequency of IFTs and IAMs. Participants in the intact inhibition condition performed a version of the Stroop task that did not deplete inhibitory control. To control for physical and mental fatigue resulting from performing the 60-min Stroop tasks in experimental conditions, participants in the control condition completed only the vigilance task. Contrary to predictions, the number of IFTs and IAMs reported during the vigilance task, using the probe-caught method, did not differ across conditions. However, manipulation checks showed that participants’ inhibitory resources were reduced in the depleted inhibition condition, and participants were more tired in the experimental than in the control conditions. These initial findings suggest that neither inhibitory control nor physical and mental fatigue affect the frequency of IFTs and IAMs.Peer reviewedFinal Published versio

    Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia

    Get PDF
    Purpose: To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Methods: Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg−1^{−1}) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Results: Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. Conclusion: The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue

    Psychological determinants of whole-body endurance performance

    Get PDF
    Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research. Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research. Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants. Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance. Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described

    Brain mechanisms that underlie the effects of motivational audiovisual stimuli on psychophysiological responses during exercise

    Get PDF
    Motivational audiovisual stimuli such as music and video have been widely used in the realm of exercise and sport as a means by which to increase situational motivation and enhance performance. The present study addressed the mechanisms that underlie the effects of motivational stimuli on psychophysiological responses and exercise performance. Twenty-two participants completed fatiguing isometric handgrip-squeezing tasks under two experimental conditions (motivational audiovisual condition and neutral audiovisual condition) and a control condition. Electrical activity in the brain and working muscles was analyzed by use of electroencephalography and electromyography, respectively. Participants were asked to squeeze the dynamometer maximally for 30 s. A single-item motivation scale was administered after each squeeze. Results indicated that task performance and situational motivational were superior under the influence of motivational stimuli when compared to the other two conditions (~20% and ~25%, respectively). The motivational stimulus downregulated the predominance of low-frequency waves (theta) in the right frontal regions of the cortex (F8), and upregulated high-frequency waves (beta) in the central areas (C3 and C4). It is suggested that motivational sensory cues serve to readjust electrical activity in the brain; a mechanism by which the detrimental effects of fatigue on the efferent control of working muscles is ameliorated.This research was supported, in part, by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
    • …
    corecore