3,415 research outputs found
A survey of hard spectrum ROSAT sources - II. Optical identification of hard sources
We have surveyed 188 ROSAT Position Sensitive Proportional Counter (PSPC) fields for X-ray sources with hard spectra (alpha 1) identified hard sources have broad lines
The nature and origin of Seyfert warm absorbers
We collate the results of recent high resolution X-ray spectroscopic observations of 23 AGN, and use the resulting information to try to provide answers to some of the main open questions about warm absorbers: where do they originate, what effect do they have on their host galaxies, and what is their importance within the energetics and dynamics of the AGN system as a whole? We find that the warm absorbers of nearby Seyferts and certain QSOs are most likely to originate in outflows from the dusty torus, and that the kinetic luminosity of these outflows accounts for well under 1% of the bolometric luminosities of the AGN. Our analysis supports, however, the view that the relativistic outflows recently observed in two PG quasars have their origin in accretion disc winds, although the energetic importance of these outflows is similar to that of the Seyfert warm absorbers. We find that the observed soft X-ray absorbing ionisation phases fill less than 10% of the available volume. Finally, we show that the amount of matter processed through an AGN outflow system, over the lifetime of the AGN, is probably large enough to have a significant influence on the evolution of the host galaxy and of the AGN itself
A new method to determine X-ray luminosity functions of AGN and their evolution with redshift
Almost all massive galaxies today are understood to contain supermassive black holes (SMBH) at their centres. SMBHs grew by accreting material from their surroundings, emitting X-rays as they did so. X-ray luminosity functions (XLFs) of active galactic nuclei (AGN) have been extensively studied in order to understand the AGN population’s cosmological properties and evolution. We present a new fixed rest-frame method to achieve a more accurate study of the AGN XLF evolution over cosmic time. Normally, XLFs are constructed in a fixed observer-frame energy band, which can be problematic because it probes different rest-frame energies at different redshifts. In the new method, we construct XLFs in the fixed rest-frame band instead, by varying the observed energy band with redshift. We target a rest-frame 2–8 keV band using XMM-Newton and HEAO 1 X-ray data, with seven observer-frame energy bands that vary with redshift for 0 < z < 3. We produce the XLFs using two techniques; one to construct a binned XLF, and one using a maximum likelihood (ML) fit, which makes use of the full unbinned source sample. We find that our ML best-fitting pure luminosity evolution results for both methods are consistent with each other, suggesting that performing XLF evolution studies with the high-redshift data limited to high-luminosity AGN is not very sensitive to the choice of fixed observer-frame or rest-frame energy band, which is consistent with our expectation that high-luminosity AGN typically show little ABSORPTION. We have demonstrated the viability of the new method in measuring the XLF evolution
AGN and star formation across cosmic time
We investigate the balance of power between stars and AGN across cosmic history, based on the comparison between the infrared (IR) galaxy luminosity function (LF) and the IR AGN LF. The former corresponds to emission from dust heated by stars and AGN, whereas the latter includes emission from AGN-heated dust only. We find that at all redshifts (at least up to z ∼ 2.5), the high-luminosity tails of the two LFs converge, indicating that the most IR-luminous galaxies are AGN-powered. Our results shed light to the decades-old conundrum regarding the flatter high-luminosity slope seen in the IR galaxy LF compared to that in the UV and optical. We attribute this difference to the increasing fraction of AGN-dominated galaxies with increasing total IR luminosity (L_{IR}). We partition the L_{IR}−z parameter space into a star formation-dominated and an AGN-dominated region, finding that the most luminous galaxies at all epochs lie in the AGN-dominated region. This sets a potential ‘limit’ to attainable star formation rates, casting doubt on the abundance of ‘extreme starbursts’: if AGN did not exist, L_{IR} > 10^{13} L⊙ galaxies would be significantly rarer than they currently are in our observable Universe. We also find that AGN affect the average dust temperatures (T_{dust}) of galaxies and hence the shape of the well-known L_{IR}−T_{dust} relation. We propose that the reason why local ULIRGs are hotter than their high-redshift counterparts is because of a higher fraction of AGN-dominated galaxies amongst the former group
Soft X-ray emission lines from a relativistic accretion disk in MCG-6-30-15 and Mrk 766
XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the Narrow Line Seyfert 1 galaxies MCG -6-30-15 and Mrk 766 are physically and spectroscopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter. We propose that the remarkably similar features detected in both objects in the 5-35 Angstrom band are H-like oxygen, nitrogen, and carbon emission lines, gravitationally redshifted and broadened by relativistic effects in the vicinity of a Kerr black hole. We discuss the implications of our interpretation, and demonstrate that the derived parameters can be physically self-consistent
Galaxy luminosity functions at redshifts 0.6-1.2 in the Chandra Deep Field South
We present the rest-frame ultraviolet (UV) galaxy luminosity function (LF) and luminosity density (LD) measurements in the far-UV (1500 Å) wavelength, in the redshift range = 0.6-1.2. The UV LF is derived using XMM-Newton Optical Monitor (XMM-OM), UV (1600-4000 Å) observations of the Chandra Deep Field South, over an area of 396 arcmin2. Using the deep UV imaging of the CDFS, we identified >2500 galaxies in our sample with UVW1AB ≤ 24.5 mag. This sample, along with various other catalogues containing redshift information, is used to calculate the binned representation of the galaxy UV LF in the two redshift bins 0.6 ≤ < 0.8 and 0.8 ≤ < 1.2, having a wide range of 1500 Å rest-frame UV magnitudes (ΔM1500 3), reaching 1-1.5 magnitudes fainter than previous studies at similar redshifts. The binned LF is described well by the Schechter function form. Using maximum-likelihood, the Schechter function is fitted to the unbinned data to obtain the best-fitting values of the the UV galaxy LF parameters. We find that characteristic magnitude M∗ brightens by 0.8 mag from = 0.7 to = 1, implying an increase in the star formation activity between these redshifts, as reported by past studies. Our estimate of the faint-end slope-1.10+0.19-0.18 is on the shallower side compared with previous studies at z = 0.7, whereas a value of-1.56+0.19-0.18 estimated for = 1.0, agrees with previous results given the uncertainties
The nature of X-ray-absorbed quasi-stellar objects
There exists a significant population of broad line, z∼ 2 quasi-stellar objects (QSOs) which have heavily absorbed X-ray spectra. Follow-up observations in the submillimetre show that these QSOs are embedded in ultraluminous starburst galaxies, unlike most unabsorbed QSOs at the same redshifts and luminosities. Here we present X-ray spectra from XMM–Newton for a sample of five such X-ray-absorbed QSOs that have been detected at submillimetre wavelengths. We also present spectra in the rest-frame ultraviolet from ground-based telescopes. All the five QSOs are found to exhibit strong C iv absorption lines in their ultraviolet spectra with equivalent width >5 Å. The X-ray spectra are inconsistent with the hypothesis that these objects show normal QSO continua absorbed by low-ionization gas. Instead, the spectra can be modelled successfully with ionized absorbers, or with cold absorbers if they possess unusually flat X-ray continuum shapes and unusual optical to X-ray spectral energy distributions. We show that the ionized absorber model provides the simplest, most self-consistent explanation for their observed properties. We estimate that the fraction of radiated power that is converted into kinetic luminosity of the outflowing winds is typically ∼4 per cent, in agreement with recent estimates for the kinetic feedback from QSOs required to produce the M–σ relation, and consistent with the hypothesis that the X-ray-absorbed QSOs represent the transition phase between obscured accretion and the luminous QSO phase in the evolution of massive galaxies
Multiwavelength observations of nova SMCN 2016-10a — one of the brightest novae ever observed
We report on multiwavelength observations of nova SMCN 2016-10a. The present observational set is one of the most comprehensive for any nova in the Small Magellanic Cloud, including: low, medium, and high resolution optical spectroscopy and spectropolarimetry from SALT, FLOYDS, and SOAR; long-term OGLE V- and I- bands photometry dating back to six years before eruption; SMARTS optical and near-IR photometry from ∼ 11 days until over 280 days post-eruption; Swift satellite X-ray and ultraviolet observations from ∼ 6 days until 319 days post-eruption. The progenitor system contains a bright disk and a main sequence or a sub-giant secondary. The nova is very fast with t2 ≃ 4.0 ± 1.0 d and t3 ≃ 7.8 ± 2.0 d in the V-band. If the nova is in the SMC, at a distance of ∼ 61 ± 10 kpc, we derive MV, max ≃ −10.5 ± 0.5, making it the brightest nova ever discovered in the SMC and one of the brightest on record. At day 5 post-eruption the spectral lines show a He/N spectroscopic class and a FWHM of ∼ 3500 km s−1 indicating moderately high ejection velocities. The nova entered the nebular phase ∼ 20 days post-eruption, predicting the imminent super-soft source turn-on in the X-rays, which started ∼ 28 days post-eruption. The super-soft source properties indicate a white dwarf mass between 1.2 M⊙ and 1.3 M⊙ in good agreement with the optical conclusions
Identifying a core set of outcome domains to measure in clinical trials for shoulder disorders: a modified Delphi study.
OBJECTIVE: To achieve consensus on the most important outcome domains to measure across all clinical trials for shoulder disorders. METHODS: We performed an online modified Delphi study with an international, multidisciplinary and multistakeholder panel. A literature review and the OMERACT Filter 2.0 framework was used to generate a list of potential core domains, which were presented to patients, clinicians and researchers in two Delphi rounds. Participants were asked to judge the importance of each potential core domain and provide a rationale for their response. A core domain was defined a priori as a domain that at least 67% of participants considered core. RESULTS: In both rounds, 335 individuals were invited to participate (268 clinicians/researchers and 67 patients); response rates were 27% (n=91) and 29% (n=96), respectively. From a list of 41 potential core domains, four domains met our criteria for inclusion: 'pain', 'physical functioning', 'global assessment of treatment success' and 'health-related quality of life'. Two additional domains, 'sleep functioning' and 'psychological functioning', met the criteria for inclusion by some, but not all stakeholder groups. There was consensus that 'number of deaths' was not a core domain, but insufficient agreement on whether or not several other domains, including 'range of motion' and 'muscle strength', were core domains. CONCLUSIONS: Based on international consensus from patients, clinicians and researchers, 'pain', 'physical functioning', 'global assessment of treatment success' and 'health-related quality of life' were considered core outcome domains for shoulder disorder trials. The value of several other domains needs further consideration
- …