478 research outputs found

    Aberrated dark-field imaging systems

    Get PDF
    We study generalized dark-field imaging systems. These are a subset of linear shift-invariant optical imaging systems, that exhibit arbitrary aberrations, and for which normally-incident plane-wave input yields zero output. We write down the theory for the forward problem of imaging coherent scalar optical fields using such arbitrarily-aberrated dark-field systems, and give numerical examples. The associated images may be viewed as a form of dark-field Gabor holography, utilizing arbitrary outgoing Green functions as generalized Huygens-type wavelets, and with the Young-type boundary wave forming the holographic reference

    Phase-and-amplitude recovery from a single phase contrast image using partially spatially coherent X-ray radiation

    Get PDF
    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single material. A priori knowledge of the object's complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase contrast data measured with a laboratory-based micro-focus X-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise

    Aberrations in shift-invariant linear optical imaging systems using partially coherent fields

    Full text link
    Here the role and influence of aberrations in optical imaging systems employing partially coherent complex scalar fields is studied. Imaging systems require aberrations to yield contrast in the output image. For linear shift-invariant optical systems, we develop an expression for the output cross-spectral density under the space-frequency formulation of statistically stationary partially coherentfields. We also develop expressions for the output cross{spectral density and associated spectral density for weak-phase, weak-phase-amplitude, and single-material objects in one transverse spatial dimension

    Inferring the time-dependent complex Ginzburg-Landau equation from modulus data

    Full text link
    We present a formalism for inferring the equation of evolution of a complex wave field that is known to obey an otherwise unspecified (2+1)-dimensional time-dependent complex Ginzburg-Landau equation, given field moduli over three closely-spaced planes. The phase of the complex wave field is retrieved via a non-interferometric method, and all terms in the equation of evolution are determined using only the magnitude of the complex wave field. The formalism is tested using simulated data for a generalized nonlinear system with a single-component complex wave field. The method can be generalized to multi-component complex fields.Comment: 9 pages, 9 figure

    X-ray dark-field and phase retrieval without optics, via the Fokker-Planck equation

    Full text link
    Emerging methods of x-ray imaging that capture phase and dark-field effects are equipping medicine with complementary sensitivity to conventional radiography. These methods are being applied over a wide range of scales, from virtual histology to clinical chest imaging, and typically require the introduction of optics such as gratings. Here, we consider extracting x-ray phase and dark-field signals from bright-field images collected using nothing more than a coherent x-ray source and detector. Our approach is based on the Fokker--Planck equation for paraxial imaging, which is the diffusive generalization of the transport-of-intensity equation. Specifically, we utilize the Fokker--Planck equation in the context of propagation-based phase-contrast imaging, where we show that two intensity images are sufficient for successful retrieval of the projected thickness and dark-field signals associated with the sample. We show the results of our algorithm using both a simulated dataset and an experimental dataset. These demonstrate that the x-ray dark-field signal can be extracted from propagation-based images, and that x-ray phase can be retrieved with better spatial resolution when dark-field effects are taken into account. We anticipate the proposed algorithm will be of benefit in biomedical imaging, industrial settings, and other non-invasive imaging applications.Comment: 16 pages, 8 figure

    Phase vortices from a Young's three-pinhole interferometer

    Full text link
    An analysis is presented of the phase vortices generated in the far field, by an arbitrary arrangement of three monochromatic point sources of complex spherical waves. In contrast with the case of three interfering plane waves, in which an infinitely-extended vortex lattice is generated, the spherical sources generate a finite number of phase vortices. Analytical expressions for the vortex core locations are developed and shown to have a convenient representation in a discrete parameter space. Our analysis may be mapped onto the case of a coherently-illuminated Young's interferometer, in which the screen is punctured by three rather than two pinholes.Comment: 10 pages, 8 figures, REVTeX4, Submitted to Phys. Rev.
    • …
    corecore