210 research outputs found
Essentiality of mitochondrial oxidative metabolism for photosynthesis: optimization of carbon assimilation and protection against photoinhibition
The review emphasizes the essentiality of mitochondrial oxidative metabolism for photosynthetic carbon assimilation. Photosynthetic activity in chloroplasts and oxidative metabolism in mitochondria interact with each other and stimulate their activities. During light, the partially modified TCA cycle supplies oxoglutarate to cytosol and chloroplasts. The marked stimulation of O2 uptake after few minutes of photosynthetic activity, termed as light enhanced dark respiration (LEDR), is now a well-known phenomenon. Both the cytochrome and alternative pathways of mitochondrial electron transport are important in such interactions. The function of chloroplast is optimized by the complementary nature of mitochondrial metabolism in multiple ways: facilitation of export of excess reduced equivalents from chloroplasts, shortening of photosynthetic induction, maintenance of photorespiratory activity, and supply of ATP for sucrose biosynthesis as well as other cytosolic needs. Further, the mitochondrial oxidative electron transport and phosphorylation also protects chloroplasts against photoinhibition. Besides mitochondrial respiration, reducing equivalents (and ATP) are used for other metabolic phenomena, such as sulfur or nitrogen metabolism and photorespiration. These reactions often involve peroxisomes and cytosol. The beneficial interaction between chloroplasts and mitochondria therefore extends invariably to also peroxisomes and cytosol. While the interorganelle exchange of metabolites is the known basis of such interaction, further experiments are warranted to identify other biochemical signals between them. The uses of techniques such as on-line mass spectrometric measurement, novel mutants/transgenics, and variability in metabolism by growth conditions hold a high promise to help the plant biologist to understand this interesting topic
Effectiveness of Support Vector Machines in Medical Data mining
The idea of medical data mining is to extract hidden knowledge in medical field using data mining techniques. One of the positive aspects is to discover the important patterns. It is possible to identify patterns even if we do not have fully understood the casual mechanisms behind those patterns. In this case, data mining prepares the ability of research and discovery that may not have been evident. This paper analyzes the effectiveness of SVM, the most popular classification techniques in classifying medical datasets. This paper analyses the performance of the NaĂŻve Bayes classifier, RBF network and SVM Classifier. The performance of predictive model is analysed with different medical datasets in predicting diseases is recorded and compared. The datasets were of binary class and each dataset had different number of attributes. The datasets include heart datasets, cancer and diabetes datasets. It is observed that SVM classifier produces better percentage of accuracy in classification. The work has been implemented in WEKA environment and obtained results show that SVM is the most robust and effective classifier for medical data sets
Magnolol: A neolignan from the Magnolia family for the prevention and treatment of cancer
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. The past few decades have witnessed widespread research to challenge carcinogenesis; however, it remains one of the most important health concerns with the worst prognosis and diagnosis. Increasing lines of evidence clearly show that the rate of cancer incidence will increase in future and will create global havoc, designating it as an epidemic. Conventional chemotherapeutics and treatment with synthetic disciplines are often associated with adverse side effects and development of chemoresistance. Thus, discovering novel economic and patient friendly drugs that are safe and efficacious is warranted. Several natural compounds have proved their potential against this dreadful disease so far. Magnolol is a hydroxylated biphenyl isolated from the root and stem bark of Magnolia tree. Magnolol can efficiently prevent or inhibit the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. Considering these perspectives, the current review primarily focuses on the fascinating role of magnolol against various types of cancers, and the source and chemistry of magnolol and the molecular mechanism underlying the targets of magnolol are discussed. This review proposes magnolol as a suitable candidate that can be appropriately designed and established into a potent anti-cancer drug
TIPE family of proteins and its implications in different chronic diseases
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. The tumor necrosis factor-a-induced protein 8-like (TIPE/TNFAIP8) family is a recently identified family of proteins that is strongly associated with the regulation of immunity and tumorigenesis. This family is comprised of four members, namely, tumor necrosis factor-a-induced protein 8 (TIPE/TNFAIP8), tumor necrosis factor-a-induced protein 8-like 1 (TIPE1/TNFAIP8L1), tumor necrosis factor-a-induced protein 8-like 2 (TIPE2/TNFAIP8L2), and tumor necrosis factor-a-induced protein 8-like 3 (TIPE3/TNFAIP8L3). Although the proteins of this family were initially described as regulators of tumorigenesis, inflammation, and cell death, they are also found to be involved in the regulation of autophagy and the transfer of lipid secondary messengers, besides contributing to immune function and homeostasis. Interestingly, despite the existence of a significant sequence homology among the four members of this family, they are involved in different biological activities and also exhibit remarkable variability of expression. Furthermore, this family of proteins is highly deregulated in different human cancers and various chronic diseases. This review summarizes the vivid role of the TIPE family of proteins and its association with various signaling cascades in diverse chronic diseases
Synthesis and Antimicrobial Activity of Spiroheterocycles
A new class of spiroheterocycles-pyrazolinyl thienofuranones and isoxazolinyl thienofuranones were prepared from benzylidene thienofuranones by 1,3-dipolar cycloaddition of nitrile imines and nitrile oxides. The dipolar reagents were generated from araldehyde phenylhydrazones and araldoximes in the presence of phase transfer catalyst. All the compounds are tested for their antimicrobial activity. Chloro substituted pyrazolinyl and isoxazolinyl thienofuranones displayed prominent antibacterial activity against B. subtilis greater than the standard drug Chloramphenicol and antifungal activity against A. niger greater than Ketoconazole. © 2019 Author(s)
Folic Acid and Protein Content in Maternal Diet and Postnatal High-Fat Feeding Affect the Tissue Levels of Iron, Zinc, and Copper in the Rat
Although maternal, fetal, and placental mechanisms compensate for disturbances in the fetal environment, any nutritional inadequacies present during pregnancy may affect fetal metabolism, and their consequences may appear in later life. The aim of the present study is to investigate the influence of maternal diet during gestation on Fe, Zn, and Cu levels in the livers and kidneys of adult rats. The study was carried out on the offspring (nâ=â48) of mothers fed either a protein-balanced or a protein-restricted diet (18% vs. 9% casein) during pregnancy, with or without folic acid supplementation (0.005- vs. 0.002-g folic acid/kg diet). At 10Â weeks of age, the offspring of each maternal group were randomly assigned to groups fed either the AIN-93G diet or a high-fat diet for 6Â weeks, until the end of the experiment. The levels of Fe, Zn, and Cu in the livers and kidneys were determined by the F-AAS method. It was found that postnatal exposure to the high-fat diet was associated with increased hepatic Fe levels (pâ<â0.001), and with decreased liver Zn and Cu contents (pâ<â0.01 and pâ<â0.05, respectively), as well as with decreased renal Cu contents (pâ<â0.001). Moreover, the offspringâs tissue mineral levels were also affected by protein and folic acid content in the maternal diet. Both prenatal protein restriction and folic acid supplementation increased the liver Zn content (pâ<â0.05) and the kidney Zn content (pâ<â0.001; pâ<â0.05, respectively), while folic acid supplementation resulted in a reduction in renal Cu level (pâ<â0.05). Summarizing, the results of this study show that maternal dietary folic acid and protein intake during pregnancy, as well as the type of postweaning diet, affect Fe, Zn, and Cu levels in the offspring of the rat. However, the mechanisms responsible for this phenomenon are unclear, and warrant further investigation
Analysis of Stability and G Ă E Interaction of Rice Genotypes across Saline and Alkaline Environments in India
Genotype Ă environment (G Ă E) interaction effects are of special interest for identifying the most suitable genotypes with respect to target environments, representative locations and other specific stresses. Twenty-two advanced breeding lines contributed by the national partners of the Salinity Tolerance Breeding Network (STBN) along with four checks were evaluated across 12 different salt affected sites comprising five coastal saline and seven alkaline environments in India. The study was conducted to assess the G Ă E interaction and stability of advanced breeding lines for yield and yield components using additive main effects and multiplicative interaction (AMMI) model. In the AMMI1 biplot, there were two mega-environments (ME) includes ME-A as CARI, KARAIKAL, TRICHY and NDUAT with winning genotype CSR 2K 262; and ME-B as KARSO, LUCKN, KARSA, GOA, CRRI, DRR, BIHAR and PANVE with winning genotypes CSR 36. Genotypes CSR 2K 262, CSR 27, NDRK 11-4, NDRK 11-3, NDRK 11-2, CSR 2K 255 and PNL 1-1-1-6-7-1 were identified as specifically adapted to favorable locations. The stability and adaptability of AMMI indicated that the best yielding genotypes were CSR 2K 262 for both coastal saline and alkaline environments and CSR 36 for alkaline environment. CARI and PANVEL were found as the most discernible environments for genotypic performance because of the greatest GE interaction. The genotype CSR 36 is specifically adapted to coastal saline environments GOA, KARSO, DRR, CRRI and BIHAR and while genotype CSR 2K 262 adapted to alkaline environments LUCKN, NDUAT, TRICH and KARAI. Use of most adapted lines could be used directly as varieties. Using them as donors for wide or specific adaptability with selection in the target environment offers the best opportunity for widening the genetic base of coastal salinity and alkalinity stress tolerance and development of adapted genotypes. Highly stable genotypes can improve the rice productivity in salt-affected areas and ensure livelihood of the resource poor farming communities
SRI-A Method for Sustainable Intensification of Rice Production with Enhanced Water Productivity
Climate change induced higher temperatures will increase cropsâ water requirements. Every 10°C increase
in mean temperature, results in 7% decline in the yield of rice crop. Hence, there is a need to develop water
saving technologies in rice which consumes more than 50% of the total irrigation water in agriculture. System
of Rice Intensification (SRI) is one such water saving rice production technology. Experiments were conducted
at different locations in India including research farm of Directorate of Rice Research (DRR), Hyderabad, during
2005-10 to assess the potential of SRI in comparison to normal transplanting/Standard Planting (NTP/SP) under
flooded condition. SRI recorded higher grain yield (6 to 65% over NTP) at majority of locations. Long term studies
clearly indicated that grain yield was significantly higher (12-23% and 4-35% over NTP in Kharif and Rabi seasons,
respectively) in SRI (with organic+inorganic fertilizers) while the SRI (with100% organic manures), recorded higher
yield (4-34%) over NTP only in the Rabi seasons. Even though, SRI resulted in higher productivity, the available
nutrient status in soil was marginally higher (10, 42 and 13% over NTP for N, P and K, respectively) at the end of
four seasons. There was a reduction in the incidence of pests in SRI and the relative abundance of plant parasitic
nematodes was low in SRI as compared to the NTP. About 31% and 37% saving in irrigation water was observed
during Kharif and Rabi seasons, respectively in both methods of SRI cultivation over NTP. SRI performed well and
consistently reduced requirement of inputs such as seed and water in different soil conditions. SRI method, using
less water for rice production can help in overcoming water shortage in future and it can also make water available
for growing other crops thus promoting crop diversificatio
Trace elements in glucometabolic disorders: an update
Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and importance of trace elements such as chromium, zinc, selenium, lithium and vanadium are much less evident and subjected to chronic debate. This review updates our actual knowledge concerning these five trace elements. A careful survey of the literature shows that while theoretical postulates from some key roles of these elements had led to real hopes for therapy of insulin resistance and diabetes, the limited experience based on available data indicates that beneficial effects and use of most of them are subjected to caution, given the narrow window between safe and unsafe doses. Clear therapeutic benefit in these pathologies is presently doubtful but some data indicate that these metals may have a clinical interest in patients presenting deficiencies in individual metal levels. The same holds true for an association of some trace elements such as chromium or zinc with oral antidiabetics. However, this area is essentially unexplored in adequate clinical trials, which are worth being performed
- âŠ