4 research outputs found

    An integrated olive stone biorefinery based on a two-step fractionation strategy

    Get PDF
    ABSTRACT: Olive stones (OS) constitute a waste lignocellulosic material produced by the olive oil industry in great amounts, that currently is only used as a low-value energy source for industrial or domestic boilers. Having in view its full valorization, this work proposes and validates an integrated strategy aiming to obtain three different streams of sugars / lignin-derived compounds. Dilute acid hydrolysis was used to obtain a xylose-rich hydroysate that was chemically converted into furfural with a 48.7 % yield. The resulting acid-pretreated solid biomass that consisted mainly of lignin and cellulose, was subjected to a catalyzed ethanol-based organosolv delignification. Temperature, time, and sulphuric acid concentration were optimized in order to recover added-value lignin products and digestible cellulose. At the optimal conditions (190 degrees C and 30 min), a 50 % delignification was reached, together with the highest enzymatic hydrolysis yields (190 g glucose/kg of OS). Phenolic compounds content in organosolv liquors reached 41.6 mg GAE/g OS. This extract presented an antioxidant capacity up to 10.9 mg TE/g OS. The pretreated solid fraction was used as a substrate for ethanol production by a pre-saccharification and simultaneous saccharification and fermentation process, enabling to obtain an ethanol concentration of 47 g/L, with a fermentation yield of 61.4 % of the theoretical maximum. Globally, from 100 kg of OS processed according to this experimental scheme, 6.9 kg of furfural, 6.2 kg of ethanol, 7.4 kg of lignin, and 4.2 kg of phenolics compounds can be obtained as main products, thus constituting a way of valorization of renewable material in a multiproduct biorefinery strategy.info:eu-repo/semantics/publishedVersio

    Biological hydrogen and furfural production from steam-exploded vine shoots

    Get PDF
    Vine shoots are an agricultural waste rich in carbohydrates that can be considered as a promising energy source alternative. The objective of this work was to propose a process strategy for the valorisation of this residual biomass, including the chemical conversion of solubilised sugars into furfural and the biological conversion of cellulosic glucose into H2. Vine shoots were subjected to steam explosion pretreatment, and its operational conditions were optimised as 190 ◦C and 1.6% H2SO4 impregnated biomass. These pretreatment conditions allowed to recover 68.2% of the hemicellulose sugars and 18.2% of glucose in the prehydrolysate and 45.3% glucose by enzymatic hydrolysis. Thus, the pretreated solid obtained under optimised conditions was subjected to enzymatic hydrolysis and the slurry generated was used as a substrate by Clostridium butyricum for fermen-tation into biohydrogen (830.7 mL/L and a yield of 3550 mL per 100 g of raw vine shoots) and organic acids . (1495.3 mg acetic acid/L and 1726.8 mg butyric acid/L). Based on furfural production, the chemical conversion of xylose in the prehydrolysate was optimised in a microwave reactor at 202 ◦C, using 0.195 M FeCl3 as a catalyst, with a furfural production of 15 g/L and 73% yield

    Predictive Power of the "Trigger Tool" for the detection of adverse events in general surgery: a multicenter observational validation study

    Get PDF
    Background In spite of the global implementation of standardized surgical safety checklists and evidence-based practices, general surgery remains associated with a high residual risk of preventable perioperative complications and adverse events. This study was designed to validate the hypothesis that a new “Trigger Tool” represents a sensitive predictor of adverse events in general surgery. Methods An observational multicenter validation study was performed among 31 hospitals in Spain. The previously described “Trigger Tool” based on 40 specific triggers was applied to validate the predictive power of predicting adverse events in the perioperative care of surgical patients. A prediction model was used by means of a binary logistic regression analysis. Results The prevalence of adverse events among a total of 1,132 surgical cases included in this study was 31.53%. The “Trigger Tool” had a sensitivity and specificity of 86.27% and 79.55% respectively for predicting these adverse events. A total of 12 selected triggers of overall 40 triggers were identified for optimizing the predictive power of the “Trigger Tool”. Conclusions The “Trigger Tool” has a high predictive capacity for predicting adverse events in surgical procedures. We recommend a revision of the original 40 triggers to 12 selected triggers to optimize the predictive power of this tool, which will have to be validated in future studies
    corecore