40 research outputs found

    Pbte Quantum Dots - Sio2 Multilayers For Optical Devices Produced By Laser Ablation

    Get PDF
    Thin films of glass doped with PbTe quantum dots were successfully fabricated. The semiconducting quantum dots were grown by laser ablation of a PbTe target (99.99%) using the second harmonic of a Q-Switched Quantel Nd:YAG laser under high purity argon atmosphere. The glass matrix was fabricated by a plasma chemical vapor deposition method using vapor of tetramethoxysilane (TMOS) as precursor. The QD's and the glass matrix were alternately deposited onto a Si (100) wafer for 60 cycles. Cross-section TEM image clearly showed QD's layer well separated from each other with glass matrix layers. The influence of the ablation time on the size distribution of the quantum dots is studied. HRTEM revealed anisotropy in the size of the QD's: they were about 9nm in the high and 3-5 in diameter. Furthermore HRTEM studies revealed that the QD's basically growth in the (200) and (220) directions. The thickness of the glass matrix layer was about 20 nm. Absorption, photo luminescence and relaxation time of the multilayer were also measured.5734116123Alivisatos, A.P., (1996) Sci., 271, p. 933Warnock, J., Awschalom, D.D., (1985) Phys. Rev. B, 32, p. 5529Borrelli, N.F., May, D.W., Holland, H.J., Smith, D.W., (1987) J. Appl. Phys., 61, p. 399Potter, B.G., Simmons, J.H., (1988) Phys. Rev. B, 37, p. 10838Gleiter, H., (1989) Prog. Mater. Sci., 33, p. 223Tsunetomo, K., Shunsuke, S., Koyama, T., Tanaka, S., Sasaki, F., Kobayashi, S., (1995) Nonlinear Opt., 13, p. 109Reynoso, V.C.S., De Paula, A.M., Cuevas, R.F., Neto, J.A.M., Alves, O.L., Cesar, C.L., Barbosa, L.C., (1995) Electr. Lett., 31 (12), pp. 1013-1015Jacob, G.J., Cesar, C.L., Barbosa, L.C., (2002) Chem. Phys. Glass, 43 C, pp. 250-252Singh, R.K., Narayan, J., (1990) Phys. Rev. B, 41, p. 8843Barnes, J.P., (2002) Nanotechnology, 13, p. 465Tudury, G.E., Marquezini, M.V., Ferreira, L.G., Barbosa, L.C., Cesar, C.L., (2000) Phys. Rev. B, 62 (11), pp. 7357-7364Cesar, C.L., Jacob, G.J., Tudury, G.E., Marquezini, M.V., Barbosa, L.C., (2004) Atti della Fondazione G. Ronchi Journal, (4), pp. 519-528. , Anno LI

    Two-photon Absorption In Direct Bandgap Semiconductors Quantum Dots

    Get PDF
    We present degenerate and nondegenerate two-photon absorption spectra in a series of CdSe and CdTe quantum dots. The measurements show that the two-photon absorption (2PA) spectrum is strongly dependent on the quantum dot size and that the 2PA coefficient decreases as the quantum dot size decreases, and it is larger for the frequency nondegenerate process. Previously we had shown a theoretical analysis of these results based on a simple model using the effective mass approximation. Although this model works well for larger quantum dots, it fails for the smaller ones. Here we use the more realistic k→ p→ model for the band structure and consider the hole band mixing in quantum dots to describe our data. This theory better describes the spectral structures for smaller quantum dots and also predicts the decrease of the 2PA coefficient with the decrease of quantum dot size. This is due to the reduction of the number of possible transitions and the blue shift of the optical bandgap from quantum confinement. This theory predicts the reduction of the 2PA coefficient with size, although our experimental results show an even stronger reduction.6327Larson, D.R., Zipfel, W.R., Willians, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W., (2003) Science, 300, pp. 1434-1436Sargent, E.H., (2005) Adv. Matt., 17, pp. 515-522Padilha, L.A., Neves, A.A.R., Rodriguez, E., Cesar, C.L., Barobosa, L.C., Cruz, C.H.B., (2005) Appl. Phys. Lett., 86, pp. 1611111-1611113Uskov, A.V., O'Reilly, E.P., Manning, R.J., Webb, R.P., Cotter, D., Laemmlin, M., Ledentsov, N.N., Bimberg, D., (2004) IEEE Phot. Tech. Lett, 16, pp. 1265-1267Cerletti, V., Coish, W.A., Gywat, O., Loss, D., (2005) Nanotech., 16, pp. R27-R49Sercel, P.C., Vahala, K.J., (1990) Phys. Rev. B, 42, pp. 3690-3710Cotter, D., Burt, M.G., Manning, R.J., (1992) Phys. Rev. Lett., 68, pp. 1200-1203Seo, J.T., Yang, Q., Creekmore, S., Temple, D., Qu, L., Yu, W., Wang, A., Kim, J.H., (2003) Phys. E, 17, pp. 101-103Banfi, G.P., Degiorgio, V., Ricard, D., (1998) Adv. Phys., 47, pp. 447-510Padilha, L.A., Fu, J., Hagan, D.J., Van Stryland, E.W., Cesar, C.L., Barbosa, L.C., Cruz, C.H.B., (2005) Opt. Exp., 13, pp. 6460-6467Padilha, L.A., Fu, J., Hagan, D.J., Van Stryland, E.W., Cesar, C.L., Barbosa, L.C., Cruz, C.H.B., (2005) Proc. SPIE, 5931, pp. 226-235Fedorov, A.V., Baranv, A.V., Inoue, K., (1996) Phys. Rev. B, 54, pp. 8627-8632Sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., Van Stryland, E.W., (1990) IEEE J. of Quantum Electron., 26, pp. 760-769Negres, R.A., Hales, J.M., Kobyakov, A., Hagan, D.J., Van Stryland, E.W., (2002) IEEE J. Quantum Electron., 38, pp. 1205-1216Hales, J.M., Hagan, D.J., Van Stryland, E.W., Schafer, K.J., Morales, A.R., Belfield, K.D., Pacher, P., Bredas, J.L., (2004) J. Chem. Phys., 121, pp. 3152-3160Barbosa, L.C., Reynoso, V.C.S., De Paula, A.M., De Oliveira, C.R.M., Alves, O.L., Craievich, A.F., Marotti, R.E., Cesar, C.L., (1997) J. Non-cryst. Solids, 219, pp. 205-211Yu, W.W., Qu, L.H., Guo, W.Z., Peng, X.G., (2003) Chem. Mater., 15, p. 2854Bunge, S.D., Krueger, K.M., Boyle, T.J., Rodriguez, M.A., Headley, T.J., Colvin, V.L., (2003) J. Mater. Chem., 13, p. 1705Qu, L.H., Peng, X.G., (2002) J. Am. Chem. Soc., 124, p. 2049L.A. Padilha, J. Fu, D.J. Hagan, E.W. Van Stryland, C.L. Cesar, L.C. Barbosa, C.H.B. Cruz, D. Buso, and A. Martucci, to be published (2006)Kane, E.O., Semiconductors & Semimetals, 1. , Cap. 3Ekimov, A.I., Hache, F., Schanne-Klein, M.C., Richard, D., Flytzanis, C., Kudryavtsev, I.A., Yazeva, T.V., Efros, Al.L., (1993) J. Opt. Soc. Am. B, 10, pp. 100-10
    corecore