96 research outputs found

    miR-16 and miR-21 Expression in the Placenta Is Associated with Fetal Growth

    Get PDF
    BACKGROUND: Novel research has suggested that altered miRNA expression in the placenta is associated with adverse pregnancy outcomes and with potentially harmful xenobiotic exposures. We hypothesized that aberrant expression of miRNA in the placenta is associated with fetal growth, a measurable phenotype resulting from a number of intrauterine factors, and one which is significantly predictive of later life outcomes. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 107 primary, term, human placentas for expression of 6 miRNA reported to be expressed in the placenta and to regulate cell growth and development pathways: miR-16, miR-21, miR-93, miR-135b, miR-146a, and miR-182. The expression of miR-16 and miR-21 was markedly reduced in infants with the lowest birthweights (p<0.05). Logistic regression models suggested that low expression of miR-16 in the placenta predicts an over 4-fold increased odds of small for gestational age (SGA) status (p = 0.009, 95% CI = 1.42, 12.05). Moreover, having both low miR-16 and low miR-21 expression in the placenta predicts a greater increase in odds for SGA than having just low miR-16 or miR-21 expression (p<0.02), suggesting an additive effect of both of these miRNA. CONCLUSIONS/SIGNIFICANCE: Our study is one of the first to investigate placental miRNA expression profiles associated with birthweight and SGA status. Future research on miRNA whose expression is associated with in utero exposures and markers of fetal growth is essential for better understanding the epigenetic mechanisms underlying the developmental origins of health and disease

    Seven-month developmental outcomes of very low birth weight infants enrolled in a randomized controlled trial of delayed versus immediate cord clamping

    Get PDF
    Objective: The results from our previous trial revealed that infants with delayed cord clamping (DCC) had significantly lesser intraventricular hemorrhage (IVH) and late-onset sepsis (LOS) than infants with immediate cord clamping (ICC). A priori, we hypothesized that infants with DCC would have better motor function by 7 months corrected age. Study Design: Infants between 24 and 31 weeks were randomized to ICC or DCC and follow-up evaluation was completed at 7 months corrected age. Result: We found no differences in the Bayley Scales of Infant Development (BSID) scores between the DCC and ICC groups. However, a regression model of effects of DCC on motor scores controlling for gestational age, IVH, bronchopulmonary dysplasia, sepsis and male gender suggested higher motor scores of male infants with DCC. Conclusion: DCC at birth seems to be protective of very low birth weight male infants against motor disability at 7 months corrected age

    Delayed Cord Clamping in Very Preterm Infants Reduces the Incidence of Intraventricular Hemorrhage and Late-Onset Sepsis: A Randomized, Controlled Trial

    Get PDF
    Objective: This study compared the effects of immediate (ICC) and delayed (DCC) cord clamping on very low birth weight (VLBW) infants on 2 primary variables: bronchopulmonary dysplasia (BPD) and suspected necrotizing enterocolitis (SNEC). Other outcome variables were late-onset sepsis (LOS) and intraventricular hemorrhage (IVH). Study Design: This was a randomized, controlled unmasked trial in which women in labor with singleton fetuses \u3c32 weeks’ gestation were randomly assigned to ICC (cord clamped at 5–10 seconds) or DCC (30–45 seconds) groups. Women were excluded for the following reasons: their obstetrician refused to participate, major congenital anomalies, multiple gestations, intent to withhold care, severe maternal illnesses, placenta abruption or previa, or rapid delivery after admission. Results: Seventy-two mother/infant pairs were randomized. Infants in the ICC and DCC groups weighed 1151 and 1175 g, and mean gestational ages were 28.2 and 28.3 weeks, respectively. Analyses revealed no difference in maternal and infant demographic, clinical, and safety variables. There were no differences in the incidence of our primary outcomes (BPD and suspected NEC). However, significant differences were found between the ICC and DCC groups in the rates of IVH and LOS. Two of the 23 male infants in the DCC group had IVH versus 8 of the 19 in the ICC group. No cases of sepsis occurred in the 23 boys in the DCC group, whereas 6 of the 19 boys in the ICC group had confirmed sepsis. There was a trend toward higher initial hematocrit in the infants in the DCC group. Conclusions: Delayed cord clamping seems to protect VLBW infants from IVH and LOS, especially for male infants

    Forced expression of the cell cycle inhibitor p57Kip2 in cardiomyocytes attenuates ischemia-reperfusion injury in the mouse heart

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial hypoxic-ischemic injury is the cause of significant morbidity and mortality worldwide. The cardiomyocyte response to hypoxic-ischemic injury is known to include changes in cell cycle regulators. The cyclin-dependent kinase inhibitor <it>p57</it><sup><it>Kip</it>2 </sup>is involved in cell cycle control, differentiation, stress signaling and apoptosis. In contrast to other cyclin-dependent kinase inhibitors, p57<sup>Kip2 </sup>expression diminishes during postnatal life and is reactivated in the adult heart under conditions of cardiac stress. Overexpression of <it>p57</it><sup><it>Kip</it>2 </sup>has been previously shown to prevent apoptotic cell death <it>in vitro </it>by inhibiting stress-activated kinases. Therefore, we hypothesized that <it>p57</it><sup><it>Kip</it>2 </sup>has a protective role in cardiomyocytes under hypoxic conditions. To investigate this hypothesis, we created a transgenic mouse (<it>R26loxpTA-p57</it><sup><it>k</it>/+</sup>) that expresses p57<sup>Kip2 </sup>specifically in cardiac tissue under the ventricular cardiomyocyte promoter <it>Mlc2v</it>.</p> <p>Results</p> <p>Transgenic mice with cardiac specific overexpression of <it>p57</it><sup><it>Kip</it>2 </sup>are viable, fertile and normally active and their hearts are morphologically indistinguishable from the control hearts and have similar heart weight/body weight ratio. The baseline functional parameters, including left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), LVdp/dt<sub>max</sub>, heart rate (HR) and rate pressure product (RPR) were not significantly different between the different groups as assessed by the Langendorff perfused heart preparation. However, after subjecting the heart <it>ex vivo </it>to 30 minutes of ischemia-reperfusion injury, the <it>p57</it><sup><it>Kip</it>2 </sup>overexpressing hearts demonstrated preserved cardiac function compared to control mice with higher left ventricular developed pressure (63 ± 15 vs 30 ± 6 mmHg, p = 0.05), rate pressure product (22.8 ± 4.86 vs 10.4 ± 2.1 × 10<sup>3</sup>bpm × mmHg, p < 0.05) and coronary flow (3.5 ± 0.5 vs 2.38 ± 0.24 ml/min, p <0.05).</p> <p>Conclusion</p> <p>These data suggest that forced cardiac expression of p57<sup>Kip2 </sup>does not affect myocardial growth, differentiation and baseline function but attenuates injury from ischemia-reperfusion in the adult mouse heart.</p

    Patterning in Placental 11-B Hydroxysteroid Dehydrogenase Methylation According to Prenatal Socioeconomic Adversity

    Get PDF
    Background: Prenatal socioeconomic adversity as an intrauterine exposure is associated with a range of perinatal outcomes although the explanatory mechanisms are not well understood. The development of the fetus can be shaped by the intrauterine environment through alterations in the function of the placenta. In the placenta, the HSD11B2 gene encodes the 11-beta hydroxysteroid dehydrogenase enzyme, which is responsible for the inactivation of maternal cortisol thereby protecting the developing fetus from this exposure. This gene is regulated by DNA methylation, and this methylation and the expression it controls has been shown to be susceptible to a variety of stressors from the maternal environment. The association of prenatal socioeconomic adversity and placental HSD11B2 methylation has not been examined. Following a developmental origins of disease framework, prenatal socioeconomic adversity may alter fetal response to the postnatal environment through functional epigenetic alterations in the placenta. Therefore, we hypothesized that prenatal socioeconomic adversity would be associated with less HSD11B2 methylation. Methods and Findings: We examined the association between DNA methylation of the HSD11B2 promoter region in the placenta of 444 healthy term newborn infants and several markers of prenatal socioeconomic adversity: maternal education, poverty, dwelling crowding, tobacco use and cumulative risk. We also examined whether such associations were sex-specific. We found that infants whose mothers experienced the greatest levels of socioeconomic adversity during pregnancy had the lowest extent of placental HSD11B2 methylation, particularly for males. Associations were maintained for maternal education when adjusting for confounders (p\u3c0.05). Conclusions: Patterns of HSD11B2 methylation suggest that environmental cues transmitted from the mother during gestation may program the developing fetus’s response to an adverse postnatal environment, potentially via less exposure to cortisol during development. Less methylation of placental HSD11B2 may therefore be adaptive and promote the effective management of stress associated with social adversity in a postnatal environment

    Effects of Placental Transfusion on Neonatal and 18 Month Outcomes in Preterm Infants: A Randomized Controlled Trial

    Get PDF
    Objective: To assess the effect of delayed cord clamping (DCC) vs immediate cord clamping (ICC) on intraventricular hemorrhage (IVH), late onset sepsis (LOS), and 18-month motor outcomes in preterm infants. Study Design: Women (n = 208) in labor with singleton fetuses (\u3c32 weeks gestation) were randomized to either DCC (30-45 seconds) or ICC (\u3c10 seconds). The primary outcomes were IVH, LOS, and motor outcomes at 18-22 months corrected age. Intention-to-treat was used for primary analyses. Results: Cord clamping time was 32 ± 16 (DCC) vs 6.6 ± 6 (ICC) seconds. Infants in the DCC and ICC groups weighed 1203 ± 352 and 1136 ± 350 g and mean gestational age was 28.3 ± 2 and 28.4 ± 2 weeks, respectively. There were no differences in rates of IVH or LOS between groups. At 18-22 months, DCC was protective against motor scores below 85 on the Bayley Scales of Infant Development, Third Edition (OR 0.32, 95% CI 0.10-0.90, P = .03). There were more women with preeclampsia in the ICC group (37% vs 22%, P = .02) and more women in the DCC group with premature rupture of membranes/preterm labor (54% vs 75%, P = .002). Preeclampsia halved the risk of IVH (OR 0.50, 95% CI 0.2-1.0) and premature rupture of membranes/preterm labor doubled the risk of IVH (OR 2.0, 95% CI 1.2-4.3). Conclusions: Although DCC did not alter the incidence of IVH or LOS in preterm infants, it improved motor function at 18-22 months corrected age

    Neutralizing Anti-Interleukin-1β Antibodies Reduce Ischemia-Related Interleukin-1β Transport Across the Blood-Brain Barrier in Fetal Sheep

    Get PDF
    Hypoxic ischemic insults predispose to perinatal brain injury. Pro-inflammatory cytokines are important in the evolution of this injury. Interleukin-1β (IL-1β) is a key mediator of inflammatory responses and elevated IL-1β levels in brain correlate with adverse neurodevelopmental outcomes after brain injury. Impaired blood-brain barrier (BBB) function represents an important component of hypoxic-ischemic brain injury in the fetus. In addition, ischemia-reperfusion increases cytokine transport across the BBB of the ovine fetus. Reducing pro-inflammatory cytokine entry into brain could represent a novel approach to attenuate ischemia-related brain injury. We hypothesized that infusions of neutralizing IL-1β monoclonal antibody (mAb) reduce IL-1β transport across the BBB after ischemia in the fetus. Fetal sheep were studied 24-h after 30-min of carotid artery occlusion. Fetuses were treated with placebo- or anti-IL-1β mAb intravenously 15-min and 4-h after ischemia. Ovine IL-1β protein expressed from IL-1β pGEX-2T vectors in E. Coli BL-21 cells was produced, purified, and radiolabeled with 125I. BBB permeability was quantified using the blood-to-brain transfer constant (Ki) with 125I-radiolabeled-IL-1β. Increases in anti-IL-1β mAb were observed in the brain of the mAb-treated group (P \u3c 0.001). Blood-to-brain transport of 125I-IL-1β was lower (P \u3c 0.04) across brain regions in the anti-IL-1β mAb treated than placebo-treated ischemic fetuses. Plasma 125I-IL-1β counts were higher (P \u3c 0.001) in the anti-IL-1β mAb than placebo-treated ischemic fetuses. Systemic infusions of anti-IL-1β mAb reduce IL-1β transport across the BBB after ischemia in the ovine fetus. Our findings suggest that conditions associated with increases in systemic pro-inflammatory cytokines and neurodevelopmental impairment could benefit from an anti-cytokine therapeutic strategy

    Effects of Delayed Cord Clamping on 4-Month Ferritin Levels, Brain Myelin Content, and Neurodevelopment: A Randomized Controlled Trial

    Get PDF
    Objective To evaluate whether placental transfusion influences brain myelination at 4 months of age. Study design A partially blinded, randomized controlled trial was conducted at a level III maternity hospital in the US. Seventy-three healthy term pregnant women and their singleton fetuses were randomized to either delayed umbilical cord clamping (DCC, \u3e5 minutes) or immediate clamping (ICC, \u3c20 \u3eseconds). At 4 months of age, blood was drawn for ferritin levels. Neurodevelopmental testing (Mullen Scales of Early Learning) was administered, and brain myelin content was measured with magnetic resonance imaging. Correlations between myelin content and ferritin levels and group-wise DCC vs ICC brain myelin content were completed. Results In the DCC and ICC groups, clamping time was 172 ± 188 seconds vs 28 ± 76 seconds (P \u3c .002), respectively; the 48-hour hematocrit was 57.6% vs 53.1% (P \u3c .01). At 4 months, infants with DCC had significantly greater ferritin levels (96.4 vs 65.3 ng/dL, P = .03). There was a positive relationship between ferritin and myelin content. Infants randomized to the DCC group had greater myelin content in the internal capsule and other early maturing brain regions associated with motor, visual, and sensory processing/function. No differences were seen between groups in the Mullen testing. Conclusion At 4 months, infants born at term receiving DCC had greater ferritin levels and increased brain myelin in areas important for early life functional development. Endowment of iron-rich red blood cells obtained through DCC may offer a longitudinal advantage for early white matter development

    In Utero Exposures, Infant Growth, and DNA Methylation of Repetitive Elements and Developmentally Related Genes in Human Placenta

    Get PDF
    BACKGROUND: Fetal programming describes the theory linking environmental conditions during embryonic and fetal development with risk of diseases later in life. Environmental insults in utero may lead to changes in epigenetic mechanisms potentially affecting fetal development. OBJECTIVES: We examined associations between in utero exposures, infant growth, and methylation of repetitive elements and gene-associated DNA in human term placenta tissue samples. METHODS: Placental tissues and associated demographic and clinical data were obtained from subjects delivering at Women and Infants Hospital in Providence, Rhode Island (USA). Methylation levels of long interspersed nuclear element-1 (LINE-1) and the Alu element AluYb8 were determined in 380 placental samples from term deliveries using bisulfite pyrosequencing. Genomewide DNA methylation profiles were obtained in a subset of 184 samples using the Illumina Infinium HumanMethylation27 BeadArray. Multiple linear regression, model-based clustering methods, and gene set enrichment analysis examined the association between birth weight percentile, demographic variables, and repetitive element methylation and gene-associated CpG locus methylation. RESULTS: LINE-1 and AluYb8 methylation levels were found to be significantly positively associated with birth weight percentile (p = 0.01 and p \u3c 0.0001, respectively) and were found to differ significantly among infants exposed to tobacco smoke and alcohol. Increased placental AluYb8 methylation was positively associated with average methylation among CpG loci found in polycomb group target genes; developmentally related transcription factor binding sites were overrepresented for differentially methylated loci associated with both elements. CONCLUSIONS: Our results suggest that repetitive element methylation markers, most notably AluYb8 methylation, may be susceptible to epigenetic alterations resulting from the intrauterine environment and play a critical role in mediating placenta function, and may ultimately inform on the developmental basis of health and disease
    • …
    corecore