3 research outputs found
Correlation between fibroblast growth factor receptor mutation, programmed death ligand-1 expression and survival in urinary bladder cancer based on real-world data
Background: Programmed cell death (PD)-1/PD-ligand 1 (PD-L1) inhibitors have made a breakthrough in the therapy of advanced urothelial bladder cancer (UBC). The impact of Fibroblast Growth Factor Receptor 3 (FGFR3) mutation on the effectiveness of PD-L1 treatment remains still unclear. Objective: Our study aimed to investigate the frequency of FGFR mutations at different tumor stages, and their relation to PD-L1 status and survival.Methods: 310 patients with urothelial bladder cancer and subsequent radical cystectomy were included in a retrospective study over a 10-year study period at the University of Szeged, Hungary. FGFR3 mutations from the most infiltrative areas of the tumor were analyzed by targeted next-generation sequencing and PD-L1 (28-8 DAKO) tests (tumor positive score -TPS and combined positives score–CPS). In T0 cases FGFR3 mutations were analyzed from the earlier resection samples. Survival and oncological treatment data were collected from the National Health Insurance Fund (NHIF). Neoadjuvant, adjuvant and palliative conventional chemotherapies were allowed; immunotherapies were not. The relationship between the covariates was tested using chi-square tests, and survival analysis was performed using the Kaplan-Meier model and Cox proportional hazards regression.Results: PD-L1 and FGFR could be tested successfully in 215 of the 310 UBC samples [pT0cyst 19 (8.8%); St.0-I 43 (20%); St.II 41 (19%); St.III-IV 112 (52%)]. Significant pairwise dependency was found between tumor stage, FGFR3 mutation status and PD-L1 expression (p < 0.01). Samples with FGFR mutation were more common in less advanced stages and were also less likely to demonstrate PD-L1 expression. The effect of all investigated factors on survival was found to correlate with tumor stage.Conclusion: FGFR alteration frequency varied between the different stages of cancer. Higher positivity rates were observed at early stages, but lower levels of PD-L1 expression were detected in patients with FGFR mutations across at all stages of the disease
Prostate-specific membrane antigen-based imaging for stereotactic irradiation of low-volume progressive prostate cancer: a single-center experience
IntroductionProstate-specific membrane antigen (PSMA) is a transmembrane protein that may be expressed on the surface of prostate cancer (PC) cells. It enables a more sensitive and specific diagnosis PC, compared to conventional anatomical imaging.AimThe integration of PSMA-based imaging in the personalized radiotherapy of PC patients and the evaluation of its impact on target volume definition if stereotactic body radiotherapy (SBRT) is planned for locally recurrent or oligometastatic disease.Patients and methodsThe data from 363 examinations were analyzed retrospectively. Inclusion criteria were histologically verified PC and clinical data suggesting local recurrence or distant metastasis. Whole-body 99mTc-PSMA-I&S single-photon emission computed tomography (SPECT)/CT or 18F-JK-PSMA-7 positron emission tomography/computer tomography (PET/CT) was carried out, and the evaluation of the scans and biological tumor volume contouring was performed at the Department of Nuclear Medicine. The target volume delineation on topometric CT (TCT) scan was performed at the Department of Oncotherapy. The comparison of the two volumes was performed by image fusion and registration.ResultsFrom 363 PSMA isotope-based examinations, 84 lesions of 64 patients were treated with SBRT. In 50 patients, 70 lesions were examined for intermodality comparison. The target volume defined by the PSMA density was significantly smaller than the tumor size defined by the TCT scan: GTVCT (gross tumor volume on the TCT), 27.58 ± 46.07 cm3; BTVPSMA (biological target volume on the PSMA-based examination), 16.14 ± 29.87 cm3. During geometrical analyses, the Dice similarity coefficient (DSC) was 0.56 ± 0.20 (0.07–0.85). Prostate-specific antigen (PSA) control was performed to evaluate the response: mean pre-radiotherapy (pre-RT) PSA was 16.98 ng/ml ( ± SD: 33.81), and post-RT PSA at 3 months after SBRT was 11.19 ng/ml ( ± SD: 32.85). Three-month post-therapy PSMA-based imaging was performed in 14 cases, in which we observed a decrease or cessation of isotope uptake. Conventional imaging control was performed in 42 cases (65.6% of all cases): 22 (52.4%) complete remissions, 14 (33.3%) partial remissions, four (9.5%) stable diseases, and two (4.8%) progressive diseases were described.ConclusionPSMA-based imaging is a promising diagnostic method for specifying the stage and detecting the low-volume progression. Our results suggest that PSMA-based hybrid imaging can influence treatment decisions and target volume delineation for SBRT
Magnetic Resonance Imaging–Based Delineation of Organs at Risk in the Head and Neck Region
Purpose: The aim of this article is to establish a comprehensive contouring guideline for treatment planning using only magnetic resonance images through an up-to-date set of organs at risk (OARs), recommended organ boundaries, and relevant suggestions for the magnetic resonance imaging (MRI)–based delineation of OARs in the head and neck (H&N) region. Methods and Materials: After a detailed review of the literature, MRI data were collected from the H&N region of healthy volunteers. OARs were delineated in the axial, coronal, and sagittal planes on T2-weighted sequences. Every contour defined was revised by 4 radiation oncologists and subsequently by 2 independent senior experts (H&N radiation oncologist and radiologist). After revision, the final structures were presented to the consortium partners. Results: A definitive consensus was reached after multi-institutional review. On that basis, we provided a detailed anatomic and functional description and specific MRI characteristics of the OARs. Conclusions: In the era of precision radiation therapy, the need for well-built, straightforward contouring guidelines is on the rise. Precise, uniform, delineation-based, automated OAR segmentation on MRI may lead to increased accuracy in terms of organ boundaries and analysis of dose-dependent sequelae for an adequate definition of normal tissue complication probability