19 research outputs found

    Single-Pill Combination to Improve Hypertension Treatment: Pharmaceutical Industry Development

    No full text
    Multiple illness is an increasingly common phenomenon. Its consequence is the need for polytherapy, which is particularly common among people suffering from arterial hypertension. The development of combined preparations (containing at least two API-active pharmaceutical ingredients) dedicated to the treatment of hypertension is a response to increased compliance, especially in elderly patients. In our work, we describe in particular the possibilities of using β-adrenergic receptors blockers and angiotensin-converting enzyme inhibitors in combinations. The combinations of APIs are used as single pills in patients with arterial hypertension with concomitant diseases such as hyperlipidemia; blood coagulation problems and diabetes mellitus were also discussed successively. Pharmacoeconomic analysis for the API combinations shown is also presented. As a final conclusion, numerous benefits of using the combined preparations should be indicated, especially by the elderly and/or in patients with coexistence of other diseases

    Tedizolid-Cyclodextrin System as Delayed-Release Drug Delivery with Antibacterial Activity

    No full text
    Progressive increase in bacterial resistance has caused an urgent need to introduce new antibiotics, one of them being oxazolidinones with their representative tedizolid. Despite the broad spectrum of activity of the parent tedizolid, it is characterized by low water solubility, which limits its use. The combination of the active molecule with a multifunctional excipient, which is cyclodextrins, allows preservation of its pharmacological activity and modification of its physicochemical properties. Therefore, the aim of the study was to change the dissolution rate and permeability through the model membrane of tedizolid by formation of solid dispersions with a cyclodextrin. The research included identification of tedizolid-hydroxypropyl-β-cyclodextrin (tedizolid/HP-β-CD) inclusion complex by thermal method (Differential Scanning Colorimetry), spectroscopic methods (powder X-ray diffraction, Fourier-Transform Infrared spectroscopy), and molecular docking. The second part of the research concerned the physicochemical properties (dissolution and permeability) and the biological properties of the system in terms of its microbiological activity. An increase in the dissolution rate was observed in the presence of cyclodextrin, while maintaining a high permeation coefficient and high microbiological activity. The proposed approach is an opportunity to develop drug delivery systems used in the treatment of resistant bacterial infections, in which, in addition to modifying the physicochemical properties caused by cyclodextrin, we observe a favorable change in the pharmacological potential of the bioactives

    Chitosan as a Functional Carrier for the Local Delivery Anti-Inflammatory Systems Containing Scutellariae baicalensis radix Extract

    No full text
    The aim of the study was to establish the influence of chitosan on the preparation of systems containing Scutellariae baicalensis radix extract and to demonstrate the potential of anti-inflammatory action for the treatment of periodontitis. In the first stage, the impact of the variables (extraction mixture composition, temperature, and the number of extraction cycles) on the extracted samples’ biological characteristics was analyzed using the Design of Experiments (DoE) approach. The best conditions for baicalin, baicalein, and wogonin extraction from Scutellariae baicalensis radix were 80% methanol in the extraction mixture, 70 °C, and 4 cycles per 60 min. The DoE approach can be used to choose the best chitosan system parameters with equal success. An increase in the deacetylation degree of chitosan used in the system improved the potential for reducing free radicals and inhibiting the hyaluronidase enzyme. Also, increasing the degree of chitosan deacetylation results in increased resistance of the carrier to biodegradation and an extended baicalin release profile, which is also associated with an increase in the viscosity of the chitosan-based system. In total, the system of a freeze-dried extract with chitosan 90/500 in the ratio of 2:1 (system S9) turns out to be the one with the best physicochemical (high percentage of baicalin release and the highest viscosity conditioning the prolonged stay at the site of administration) and biological properties (the highest antioxidant and anti-inflammatory activities), resulting in the highest potential for use in the treatment of oral inflammatory diseases

    Is It Possible to Improve the Bioavailability of Resveratrol and Polydatin Derived from Polygoni cuspidati Radix as a Result of Preparing Electrospun Nanofibers Based on Polyvinylpyrrolidone/Cyclodextrin?

    No full text
    The low bioavailability of resveratrol and polydatin obtained from Polygoni cuspidati extract limits the application of their pro-health properties. While nanofibers have attracted increasing attention in nutrition delivery due to their special properties, including an increase in the dissolution and permeability, which affects the bioavailability. Therefore, it is justified to obtain nanofibers from Polygoni cuspidati extract, which showed antioxidant and anti-inflammatory properties as a result of a presence of stilbene analogs in the Polygoni cuspidati extract (especially resveratrol and polydatin). In the first stage of the work, using the Design of Experiment (DoE) approach, the Polygoni cuspidati extract (70% of methanol, temperature 70 °C and 4 cycles) was obtained, which showed the best antioxidant and anti-inflammatory properties. Using the Polygoni cuspidati extract as a substrate, nanofibers were obtained by electrospinning. The identification of nanofibers was confirmed on the basis of the analysis of changes in XRPD diffractograms, SEM picture and FTIR-ATR spectra. Obtaining nanofibers from the Polygoni cuspidati extract significantly improved the solubility of resveratrol and polydatin (approx. 6-fold comparing to pure substance). As a consequence, the penetration coefficients of both tested resveratrol and polydatin also increased. The proposed strategy for the preparation of nanofibers from the Polygoni cuspidati extract is an innovative approach to better use the synergy of biological action of active compounds present in extracts. It is especially during the development of nutraceuticals based on the use of selected stilbenes

    Mechanochemical Properties of Mucoadhesive Tablets Based on PVP/HPβCD Electrospun Nanofibers as Local Delivery of <i>Polygoni cuspidati</i> Extract for Treating Oral Infections

    No full text
    This study investigated the ability of PVP/HPβCD-based electrospun nanofibers to enhance the dissolution rate of poorly soluble polydatin and resveratrol, the main active components of Polygoni cuspidati extract. To make a solid unit dosage form that would be easier to administer, extract-loaded nanofibers were ground. SEM examination was used to analyze the nanostructure of the fibers, and the results of the cross-section of the tablets showed that they had maintained their fibrous structure. The release of the active compounds (polydatin and resveratrol) in the mucoadhesive tablets was complete and prolonged in time. Additionally, the possibility of staying on the mucosa for a prolonged time has also been proven for both tablets from PVP/HPβCD-based nanofibers and powder. The appropriate physicochemical properties of the tablets, along with the proven antioxidant, anti-inflammatory, and antibacterial properties of P. cuspidati extract, highlight the particular benefits of the mucoadhesive formulation for use as a drug delivery system for periodontal diseases

    Improving Solubility and Permeability of Hesperidin through Electrospun Orange-Peel-Extract-Loaded Nanofibers

    No full text
    Orange peel, which is a rich source of polyphenolic compounds, including hesperidin, is produced as waste in production. Therefore, optimization of the extraction of hesperidin was performed to obtain its highest content. The influence of process parameters such as the kind of extraction mixture, its temperature and the number of repetitions of the cycles on hesperidin content, the total content of phenolic compounds and antioxidant (DPPH scavenging assay) as well as anti-inflammation activities (inhibition of hyaluronidase activity) was checked. Methanol and temperature were key parameters determining the efficiency of extraction in terms of the possibility of extracting compounds with the highest biological activity. The optimal parameters of the orange peel extraction process were 70% of methanol in the extraction mixture, a temperature of 70 °C and 4 cycles per 20 min. The second part of the work focuses on developing electrospinning technology to synthesize nanofibers of polyvinylpyrrolidone (PVP) and hydroxypropyl-β-cyclodextrin (HPβCD) loaded with hesperidin-rich orange peel extract. This is a response to the circumvention of restrictions in the use of hesperidin due to its poor bioavailability resulting from low solubility and permeability. Dissolution studies showed improved hesperidin solubility (over eight-fold), while the PAMPA-GIT assay confirmed significantly better transmucosal penetration (over nine-fold). A DPPH scavenging assay of antioxidant activity as well as inhibition of hyaluronidase to express anti-inflammation activity was established for hesperidin in prepared electrospun nanofibers, especially those based on HPβCD and PVP. Thus, hesperidin-rich orange peel nanofibers may have potential buccal applications to induce improved systemic effects with pro-health biological activity

    Towards the Preparation of a Hydrogel from Lyophilisates of the Aloe arborescens Aqueous Extract

    No full text
    Aloe gel is a medicinal raw material with proven pharmacological activity. The health-promoting properties of other species of Aloe upon topical application prompted us to develop a formulation for the topical application of A. arborescence species. As a result of the gel preparation from the aqueous lyophilized extracts of three-year-old leaves of A. arborescence, no changes in the composition of the content of aloins A and aloenin A were found. The potential to neutralize free radicals was tested using DPPH and CUPRAC techniques, which confirmed the anti-radical activity of the lyophilisate. Screening of the inhibition of enzymes, the hyperactivity of which is associated with adverse changes in the skin of a pro-inflammatory nature, was performed. Importantly, using the PAMPA SKIN model, the possibility of the penetration of selected extract compounds (aloin A and aloenin A) through the skin was proven. Then, two formulations were prepared based on sodium alginate and hydroxypropyl methylcellulose (HPMC) and the hydrogels were characterized (rheological analysis, drug release profiles, permeability, and stability studies). HPMC-based hydrogel was the one with a targeted release of active substances and greater stability. Aloe arborescens hydrogel matrices seem to be a promising treatment strategy for inflammatory surface damage based on &ldquo;green technology&rdquo; at the stage of extract preparation and development of the drug form for topical application

    Hot Melt Extrusion for Improving the Physicochemical Properties of Polydatin Derived from <i>Polygoni cuspidati</i> Extract; A Solution Recommended for Buccal Applications

    No full text
    Three different types of solid dispersions based on polyvinyl polymers and related copolymers (Kollidon® VA64, Soluplus® and Kollicoat IR®) comprising polydatin-rich Polygoni cuspidati extract were prepared by hot melt extrusion. The systems were characterized using X-ray powder diffraction, infrared spectroscopy as well as by polydatin release and in vitro permeability. Mucoadhesive tablets were prepared from the extrudates based on Kollidon® VA64 and Soluplus® to obtain a suitable pharmaceutical form, where (hydroxypropyl)methyl cellulose was added as a mucoadhesive agent. The tablets were evaluated in terms of the kinetics of polydatin release as well as their mucoadhesive properties. The best tabletability properties, polydatin release profile and adequate mucoadhesive properties were obtained by the formulation containing the Kollidon® VA64-based extrudate, which makes it an excellent prototype for enhancing the release of poorly water-soluble compounds

    The Antioxidant Potential of Resveratrol from Red Vine Leaves Delivered in an Electrospun Nanofiber System

    No full text
    Despite the wide pharmacological action of polyphenols, their usefulness is limited due to their low oral bioavailability, which is due to their low solubility and rapid first-pass metabolism. Red vine leaf extract is an herbal medicine containing several polyphenols, with resveratrol and polydatin as the main compounds exhibiting antioxidant and anti-inflammatory properties. In the first stage of the work, using the Design of Experiment (DoE) approach, the red vine leaf extract (50% methanol, temperature 70 °C, and three cycles per 60 min) was obtained, which showed optimal antioxidant and anti-inflammatory properties. In order to circumvent the above-described limitations and use innovative technology, electrospun nanofibers containing the red vine leaf extract, polyvinylpyrrolidone (PVP), and hydroxypropyl-β-cyclodextrin (HPβCD) were first developed. The optimization of the process involved the time of system mixing prior to electrospinning, the mixture flow rate, and the rotation speed of the collector. Dissolution studies of nanofibers showed improved resveratrol release from the nanofibers (over five-fold). Additionally, a PAMPA-GIT assay confirmed significantly better buccal penetration of resveratrol from this nanofiber combination (over ten-fold). The proposed strategy for electrospun nanofibers with the red vine leaf extract is an innovative approach to better use the synergy of the biological action of active compounds present in extracts that are beneficial for the development of nutraceuticals

    Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review

    No full text
    Periodontal diseases are one of the most significant challenges in dental health. It is estimated that only a few percent of the worldwide population have entirely healthy teeth, and according to WHO, oral diseases may affect up to 3.5 billion people worldwide. One of the most serious oral diseases is periodontitis, an inflammatory disease affecting periodontal tissues, caused by pathogenic bacteria and environmental factors such as the ageing population, abuse of tobacco products, and lack of adequate oral hygiene due low public awareness. Plant materials are widely and successfully used in the management of many conditions, including periodontitis. Plant materials for periodontitis exhibit antibacterial, anti-inflammatory, antioxidant activities and affect the periodontium structure. Numerous studies demonstrate the advantages of phytotherapy for periodontitis relief and indicate the usefulness of Baikal skullcap root, Pomegranate fruit peel and root cortex, Tea leaves, Chamomile flowers, Magnolia bark, Blackberry leaves and fruits, Cranberry fruits and Lippia sidoides essential oil. This review aims to analyze the use and applicability of selected plant materials in periodontitis management since it is of paramount importance to evaluate the evidence of the traditionally used plant materials in light of continuously growing interest in phytotherapy and its adjuvant role in the treatment of periodontitis
    corecore