30 research outputs found

    Information theoretic approach to interactive learning

    Full text link
    The principles of statistical mechanics and information theory play an important role in learning and have inspired both theory and the design of numerous machine learning algorithms. The new aspect in this paper is a focus on integrating feedback from the learner. A quantitative approach to interactive learning and adaptive behavior is proposed, integrating model- and decision-making into one theoretical framework. This paper follows simple principles by requiring that the observer's world model and action policy should result in maximal predictive power at minimal complexity. Classes of optimal action policies and of optimal models are derived from an objective function that reflects this trade-off between prediction and complexity. The resulting optimal models then summarize, at different levels of abstraction, the process's causal organization in the presence of the learner's actions. A fundamental consequence of the proposed principle is that the learner's optimal action policies balance exploration and control as an emerging property. Interestingly, the explorative component is present in the absence of policy randomness, i.e. in the optimal deterministic behavior. This is a direct result of requiring maximal predictive power in the presence of feedback.Comment: 6 page

    The Value of Information for Populations in Varying Environments

    Full text link
    The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon's communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory

    Robust grasping under object pose uncertainty

    Get PDF
    This paper presents a decision-theoretic approach to problems that require accurate placement of a robot relative to an object of known shape, such as grasping for assembly or tool use. The decision process is applied to a robot hand with tactile sensors, to localize the object on a table and ultimately achieve a target placement by selecting among a parameterized set of grasping and information-gathering trajectories. The process is demonstrated in simulation and on a real robot. This work has been previously presented in Hsiao et al. (Workshop on Algorithmic Foundations of Robotics (WAFR), 2008; Robotics Science and Systems (RSS), 2010) and Hsiao (Relatively robust grasping, Ph.D. thesis, Massachusetts Institute of Technology, 2009).National Science Foundation (U.S.) (Grant 0712012
    corecore