4 research outputs found

    Allometric Equations to Estimate Aboveground Biomass in Spotted Gum (Corymbia citriodora Subspecies variegata) Plantations in Queensland

    Get PDF
    Accurate equations are critical for estimating biomass and carbon accumulation for forest carbon projects, bioenergy, and other inventories. Allometric equations can provide a reliable and accurate method for estimating and predicting biomass and carbon sequestration. Cross-validatory assessments are also essential to evaluate the prediction ability of the selected model with satisfactory accuracy. We destructively sampled and weighed 52 sample trees, ranging from 11.8 to 42.0 cm in diameter at breast height from three plantations in Queensland to determine biomass. Weighted nonlinear models were used to explore the influence of different variables using two datasets: the first dataset (52 trees) included diameter at breast height (D), height (H) and wood density (ρ); and the second dataset (40 trees) also included crown diameter (CD) and crown volume (CV). Cross validation of independent data showed that using D alone proved to be the best performing model, with the lowest values of AIC = 434.4, bias = −2.2% and MAPE = 7.2%. Adding H and ρ improved the adjusted. R2 (Δ adj. R2 from 0.099 to 0.135) but did not improve AIC, bias and MAPE. Using the single variable of CV to estimate aboveground biomass (AGB) was better than CD, with smaller AIC and MAPE less than 2.3%. We demonstrated that the allometric equations developed and validated during this study provide reasonable estimates of Corymbia citriodora subspecies variegata (spotted gum) biomass. This equation could be used to estimate AGB and carbon in similar spotted gum plantations. In the context of global forest AGB estimations and monitoring, the CV variable could allow prediction of aboveground biomass using remote sensing datasets

    Drone-Based Environmental Monitoring and Image Processing Approaches for Resource Estimates of Private Native Forest

    Get PDF
    This paper investigated the utility of drone-based environmental monitoring to assist with forest inventory in Queensland private native forests (PNF). The research aimed to build capabilities to carry out forest inventory more efficiently without the need to rely on laborious field assessments. The use of drone-derived images and the subsequent application of digital photogrammetry to obtain information about PNFs are underinvestigated in southeast Queensland vegetation types. In this study, we used image processing to separate individual trees and digital photogrammetry to derive a canopy height model (CHM). The study was supported with tree height data collected in the field for one site. The paper addressed the research question “How well do drone-derived point clouds estimate the height of trees in PNF ecosystems?” The study indicated that a drone with a basic RGB camera can estimate tree height with good confidence. The results can potentially be applied across multiple land tenures and similar forest types. This informs the development of drone-based and remote-sensing image-processing methods, which will lead to improved forest inventories, thereby providing forest managers with recent, accurate, and efficient information on forest resources

    The Effect of Tree Densities on the Biomass of \u3cem\u3eLeucaena leucocephala\u3c/em\u3e and \u3cem\u3eChloris gayana\u3c/em\u3e Using a Nelder Fan Design

    Get PDF
    Leucaena leucocephala-grass pastures are widely used for ruminant feeding in tropical and subtropical regions. In Australia, over 200,000 ha of leucaena grass pasture have been planted with more plantings expected as it is recognized as the most productive, profitable and sustainable feeding system (Shelton and Dalzell, 2007). Planting densities and planting configurations for the leucaena component vary, ranging from single or double leucaena hedgerows 3 to 12 m apart (Radrizzani et al., 2010). There is little information about how tree/grass planting configurations and resulting inter- and intraspecific competition affect above and below-ground interactions. We hypothesise that individual leucaena tree biomass will be inversely related to leucaena tree density, with greatest competition at low density, while medium to high leucaena densities will reduce grass biomass production

    Species-Specific Allometric Equations for Predicting Belowground Root Biomass in Plantations: Case Study of Spotted Gums (Corymbia citriodora subspecies variegata) in Queensland

    Get PDF
    Spotted gum (Corymbia citriodora spp. variegata; CCV) has been widely planted, has a wide natural distribution, and is the most important commercially harvested hardwood species in Queensland, Australia. It has a great capacity to sequester carbon, thus reducing the impact of CO2 emissions on climate. Belowground root biomass (BGB) plays an important role as a carbon sink in terrestrial ecosystems. To explore the potential of biomass and carbon accumulation belowground, we developed and validated models for CCV plantations in Queensland. The roots of twenty-three individual trees (size range 11.8–42.0 cm diameter at breast height) from three sites were excavated to a 1-m depth and were weighed to obtain BGB. Weighted nonlinear regression models were most reliable for estimating BGB. To evaluate the candidate models, the data set was cross-validated with 70% of the data used for training and 30% of the data used for testing. The cross-validation process was repeated 23 times and the validation of the models were averaged over 23 iterations. The best model for predicting spotted gum BGB was based on a single parameter, with the diameter at breast height (D) as an independent variable. The best equation BGB = 0.02933 × D2.5805 had an adjusted R2 of 0.854 and a mean absolute percentage error of 0.090%. This equation was tested against published BGB equations; the findings from this are discussed. Our equation is recommended to allow improved estimates of BGB for this species
    corecore