27 research outputs found

    A Voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas

    Full text link
    [EN] The objective was to study the correlations and the differences in glucose metabolism between the thalamus and cortical structures in a sample of severe traumatic brain injury (TBI) patients with different neurological outcomes. We studied 49 patients who had suffered a severe TBI and 10 healthy control subjects using 18Ffluorodeoxyglucose positron emission tomography (18F-FDG-PET). The patients were divided into three groups: a vegetative or minimally-conscious state (MCS&VS) group (n = 17), which included patients who were in a vegetative or a minimally conscious state; an In-post-traumatic amnesia (In-PTA) group (n = 12), which included patients in PTA; and an Out-PTA group (n = 20), which included patients who had recovered from PTA. SPM5 software was used to determine the metabolic differences between the groups. FDG-PET images were normalized and four regions of interest were generated around the thalamus, precuneus, and the frontal and temporal lobes. The groups were parameterized using Student's t-test. Principal component analysis was used to obtain an intensity-estimated-value per subject to correlate the function between the structures. Differences in glucose metabolism in all structures were related to the neurological outcome, and the most severe patients showed the most severe hypometabolism. We also found a significant correlation between the cortico-thalamocortical metabolism in all groups. Voxel-based analysis suggests a functional correlation between these four areas, and decreased metabolism was associated with less favorable outcomes. Higher levels of activation of the cortico-cortical connections appear to be related to better neurological condition. Differences in the thalamocortical correlations between patients and controls may be related to traumatic dysfunction due to focal or diffuse lesions.A preliminary version of the manuscript presented here has obtained the 2nd award of IV Convocatoria de los Premios de Investigacio´n en Medicina del Colegio de Me´dicos de Valladolid (IV edition of the Medical Research Award of the Offi- cial College of Physicians of Valladolid).Garcia Panach, J.; Lull Noguera, N.; Lull Noguera, JJ.; Ferri Domínguez, J.; Martínez, C.; Sopena, P.; Robles Viejo, M.... (2011). A Voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas. Journal of Neurotrauma. 28(9):1707-1717. doi:10.1089/neu.2011.1851S1707171728

    Impact of amyloid-PET in daily clinical management of patients with cognitive impairment fulfilling appropriate use criteria

    Get PDF
    To evaluate the use of amyloid-positron emission tomography (PET) in routine clinical practice, in a selected population with cognitive impairment that meets appropriate use criteria (AUC). A multicenter, observational, prospective case-series study of 211patients from 2 level-3 hospitals who fulfilled clinical AUC for amyloid-PET scan in a naturalistic setting. Certainty degree was evaluated using a 5-point Likert scale: 0 (very low probability); 1 (low probability); 2 (intermediate probability); 3 (high probability); and 4 (practically sure), before and after amyloid PET. The treatment plan was considered as cognition-specific or noncognition-specific. Amyloid-PET was positive in 118 patients (55.9%) and negative in 93 patients (44.1%). Diagnostic prescan confidence according amyloid-PET results showed that in both, negative and positive-PET subgroup, the most frequent category was intermediate probability (45.7% and 55.1%, respectively). After the amyloid-PET, the diagnostic confidence showed a very different distribution, that was, in the negative-PET group the most frequent categories are very unlikely (70.7%) and unlikely (29.3%), while in the positive- PET group were very probable (57.6%) and practically sure (39%). Only in 14/211 patients (6.6%) the result of the amyloid-PET did not influence the diagnostic confidence, while in 194 patients (93.4%), the diagnostic confidence improved significantly after amyloid- PET results. The therapeutic intention was modified in 93 patients (44.1%). Specific treatment for Alzheimer disease was started, before amyloid-PET, in 80 patients (37.9%). This naturalistic study provides evidence that the implementation of amyloid-PET is associated with a significant improvement in diagnostic confidence and has a high impact on the therapeutic management of patients with mild cognitive impairment fulfilled clinical AUC

    Estado general de los cañaverales en la provincia de Tucumán

    Get PDF
    El relevamiento del estado general de los cultivos de caña de azúcar de Tucumán permitió obtener una aproximación cualitativa y de potencial de producción del cultivo para la presente zafra 2021. Para ello se realizó un recorrido, relevando 85 localidades del área cañera de la provincia y estableciendo escalas valorativas que consideraron: desarrollo vegetativo alcanzado; manejo agrícola del cañaveral; oferta ambiental (lluvias en volumen y distribución, luz, temperatura y calidad de suelos). En función de lo relevado, como en campañas anteriores, se registró una fuerte heterogeneidad en el desarrollo de los cañaverales, asociada a razones climáticas y de manejo, principalmente, combinado con la edad del cañaveral. Por esto, en lotes de más edad se detectó un menor potencial productivo y de desarrollo muy dispar dentro del mismo lote. Por otra parte, la presencia o ausencia de cobertura de rastrojo incidió en la conservación de humedad, condicionando el crecimiento inicial del cañaveral. Las plantaciones del año 2020 tuvieron un comportamiento muy dispar, derivado del agua acumulada en el perfil y asociado a la clase textural de cada microrregión. En tanto, se registró información de lotes que tuvieron que desceparse por falta de emergencia o alto porcentaje de fallas. El déficit hídrico -que fue de 230 a 370 mm entre distintas localidades- se evidenció desde el otoño del 2020, condicionando fuertemente el inicio del crecimiento del cultivo hasta el mes de diciembre, en especial en departamento del este y noreste del área cañera.EEA FamailláFil: Felipe, Arturo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Vallejo, Juan Inosencio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; Argentina.Fil: Sopena, Roberto Alfredo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Corroto Buffo, Juan Martín. Programa Cambio Rural en INTA Famaillá; ArgentinaFil: Terán, Horacio. Programa Cambio Rural en INTA Famaillá; ArgentinaFil: Benedetti, Pablo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famailla; Argentin

    Using CT Data to Improve the Quantitative Analysis of 18F-FBB PET Neuroimages

    Get PDF
    18F-FBB PET is a neuroimaging modality that is been increasingly used to assess brain amyloid deposits in potential patients with Alzheimer’s disease (AD). In this work, we analyze the usefulness of these data to distinguish between AD and non-AD patients. A dataset with 18F-FBB PET brain images from 94 subjects diagnosed with AD and other disorders was evaluated by means of multiple analyses based on t-test, ANOVA, Fisher Discriminant Analysis and Support Vector Machine (SVM) classification. In addition, we propose to calculate amyloid standardized uptake values (SUVs) using only gray-matter voxels, which can be estimated using Computed Tomography (CT) images. This approach allows assessing potential brain amyloid deposits along with the gray matter loss and takes advantage of the structural information provided by most of the scanners used for PET examination, which allow simultaneous PET and CT data acquisition. The results obtained in this work suggest that SUVs calculated according to the proposed method allow AD and non-AD subjects to be more accurately differentiated than using SUVs calculated with standard approaches.This work was supported by the MINECO/FEDER under the TEC2012-34306 and TEC2015-64718-R projects and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía under the Excellence Project P11-TIC- 7103. The work was also supported by the Vicerectorate of Research and Knowledge Transfer of the University of Granada

    Trends in the epidemiology of catheter-related bloodstream infections; towards a paradigm shift, Spain, 2007 to 2019

    Get PDF
    Altres ajuts: Departament de Salut. Generalitat de Catalunya ("Pla estratègic de recerca i innovació en salut (PERIS) 2019-2021"); Ministerio de Asuntos Económicos y Transformación Digital; Red Española de Investigación en Patología Infecciosa (REIPI).Background: Catheter-related bloodstream infections (CRBSI) are frequent healthcare-associated infections and an important cause of death. Aim: To analyse changes in CRBSI epidemiology observed by the Infection Control Catalan Programme (VINCat). Methods: A cohort study including all hospital-acquired CRBSI episodes diagnosed at 55 hospitals (2007-2019) in Catalonia, Spain, was prospectively conducted. CRBSI incidence rates were adjusted per 1,000patientdays. To assess the CRBSI rate trend per year, negative binomial models were used, with the number of events as the dependent variable, and the year as the main independent variable. From each model, the annual rate of CRBSI diagnosed per 1,000patientdays and the incidence rate ratio (IRR) with its 95% confidence intervals (CI) were reported. Results: During the study, 9,290 CRBSI episodes were diagnosed (mean annual incidence rate:0.20episodes/1,000patientdays). Patients' median age was 64.1years; 36.6% (3,403/9,290) were female. In total, 73.7% (n=6,845) of CRBSI occurred in non-intensive care unit (ICU) wards, 62.7% (n=5,822) were related to central venous catheter (CVC), 24.1% (n=2,236) to peripheral venous catheters (PVC) and 13.3% (n=1,232) to peripherally-inserted central venous catheters (PICVC). Incidence rate fell over the study period (IRR:0.94;95%CI:0.93-0.96), especially in the ICU (IRR:0.88;95%CI:0.87-0.89). As a whole, while episodes of CVC CRBSI fell significantly (IRR:0.88;95%CI:0.87-0.91), peripherally-inserted catheter CRBSI (PVC and PICVC) rose, especially in medical wards (IRR PICVC:1.08;95%CI:1.05-1.11; IRR PVC: 1.03; 95% 1.00-1.05). Conclusions: Over the study, CRBSIs associated with CVC and diagnosed in ICUs decreased while episodes in conventional wards involving peripherally-inserted catheters increased. Hospitals should implement preventive measures in conventional wards

    Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition

    Full text link
    Objective: To study the relationship between thalamic glucose metabolism and neurological outcome after severe traumatic brain injury (TBI). Methods: Forty-nine patients with severe and closed TBI and 10 healthy control subjects with 18F-FDG PET were studied. Patients were divided into three groups: MCS&VS group (n ¼ 17), patients in a vegetative or a minimally conscious state; In-PTA group (n ¼ 12), patients in a state of post-traumatic amnesia (PTA); and Out-PTA group (n ¼ 20), patients who had emerged from PTA. SPM5 software implemented in MATLAB 7 was used to determine the quantitative differences between patients and controls. FDG-PET images were spatially normalized and an automated thalamic ROI mask was generated. Group differences were analysed with two sample voxel-wise t-tests. Results: Thalamic hypometabolism was the most prominent in patients with low consciousness (MCS&VS group) and the thalamic hypometabolism in the In-PTA group was more prominent than that in the Out-PTA group. Healthy control subjects showed the greatest thalamic metabolism. These differences in metabolism were more pronounced in the internal regions of the thalamus. Conclusions: The results confirm the vulnerability of the thalamus to suffer the effect of the dynamic forces generated during a TBI. Patients with thalamic hypometabolism could represent a sub-set of subjects that are highly vulnerable to neurological disability after TBI.Lull Noguera, N.; Noé, E.; Lull Noguera, JJ.; Garcia Panach, J.; Chirivella, J.; Ferri, J.; López-Aznar, D.... (2010). Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition. Brain Injury. 24(9):1098-1107. doi:10.3109/02699052.2010.494592S10981107249Gallagher, C. N., Hutchinson, P. J., & Pickard, J. D. (2007). Neuroimaging in trauma. Current Opinion in Neurology, 20(4), 403-409. doi:10.1097/wco.0b013e32821b987bWoischneck, D., Klein, S., Rei�berg, S., D�hring, W., Peters, B., & Firsching, R. (2001). Classification of Severe Head Injury Based on Magnetic Resonance Imaging. Acta Neurochirurgica, 143(3), 263-271. doi:10.1007/s007010170106Grados, M. A. (2001). Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome. Journal of Neurology, Neurosurgery & Psychiatry, 70(3), 350-358. doi:10.1136/jnnp.70.3.350Meythaler, J. M., Peduzzi, J. D., Eleftheriou, E., & Novack, T. A. (2001). Current concepts: Diffuse axonal injury–associated traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 82(10), 1461-1471. doi:10.1053/apmr.2001.25137Scheid, R., Walther, K., Guthke, T., Preul, C., & von Cramon, D. Y. (2006). Cognitive Sequelae of Diffuse Axonal Injury. Archives of Neurology, 63(3), 418. doi:10.1001/archneur.63.3.418Brandstack, N., Kurki, T., Tenovuo, O., & Isoniemi, H. (2006). MR imaging of head trauma: Visibility of contusions and other intraparenchymal injuries in early and late stage. Brain Injury, 20(4), 409-416. doi:10.1080/02699050500487951Xu, J., Rasmussen, I.-A., Lagopoulos, J., & Håberg, A. (2007). Diffuse Axonal Injury in Severe Traumatic Brain Injury Visualized Using High-Resolution Diffusion Tensor Imaging. Journal of Neurotrauma, 24(5), 753-765. doi:10.1089/neu.2006.0208Levine, B., Fujiwara, E., O’connor, C., Richard, N., Kovacevic, N., Mandic, M., … Black, S. E. (2006). In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging. Journal of Neurotrauma, 23(10), 1396-1411. doi:10.1089/neu.2006.23.1396Metting, Z., Rödiger, L. A., De Keyser, J., & van der Naalt, J. (2007). Structural and functional neuroimaging in mild-to-moderate head injury. The Lancet Neurology, 6(8), 699-710. doi:10.1016/s1474-4422(07)70191-6Nakayama, N. (2006). Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis. Journal of Neurology, Neurosurgery & Psychiatry, 77(7), 856-862. doi:10.1136/jnnp.2005.080523Nakayama, N. (2006). Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. Journal of Neurology, Neurosurgery & Psychiatry, 77(7), 850-855. doi:10.1136/jnnp.2005.077875O’Leary, D. D. M., Schlaggar, B. L., & Tuttle, R. (1994). Specification of Neocortical Areas and Thalamocortical Connections. Annual Review of Neuroscience, 17(1), 419-439. doi:10.1146/annurev.ne.17.030194.002223Mitelman, S. A., Byne, W., Kemether, E. M., Newmark, R. E., Hazlett, E. A., Haznedar, M. M., & Buchsbaum, M. S. (2006). Metabolic thalamocortical correlations during a verbal learning task and their comparison with correlations among regional volumes. Brain Research, 1114(1), 125-137. doi:10.1016/j.brainres.2006.07.043Laureys, S., Faymonville, M., Luxen, A., Lamy, M., Franck, G., & Maquet, P. (2000). Restoration of thalamocortical connectivity after recovery from persistent vegetative state. The Lancet, 355(9217), 1790-1791. doi:10.1016/s0140-6736(00)02271-6Laureys, S., Goldman, S., Phillips, C., Van Bogaert, P., Aerts, J., Luxen, A., … Maquet, P. (1999). Impaired Effective Cortical Connectivity in Vegetative State: Preliminary Investigation Using PET. NeuroImage, 9(4), 377-382. doi:10.1006/nimg.1998.0414Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in coma, vegetative state, and related disorders. The Lancet Neurology, 3(9), 537-546. doi:10.1016/s1474-4422(04)00852-xGuye, M., Bartolomei, F., & Ranjeva, J.-P. (2008). Imaging structural and functional connectivity: towards a unified definition of human brain organization? Current Opinion in Neurology, 24(4), 393-403. doi:10.1097/wco.0b013e3283065cfbPrice, C. J., & Friston, K. J. (2002). Functional Imaging Studies of Neuropsychological Patients: Applications and Limitations. Neurocase, 8(5), 345-354. doi:10.1076/neur.8.4.345.16186Kim, J., Avants, B., Patel, S., Whyte, J., Coslett, B. H., Pluta, J., … Gee, J. C. (2008). Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study. NeuroImage, 39(3), 1014-1026. doi:10.1016/j.neuroimage.2007.10.005Maxwell, W. L., MacKinnon, M. A., Smith, D. H., McIntosh, T. K., & Graham, D. I. (2006). Thalamic Nuclei After Human Blunt Head Injury. Journal of Neuropathology & Experimental Neurology, 65(5), 478-488. doi:10.1097/01.jnen.0000229241.28619.75SIDAROS, A., SKIMMINGE, A., LIPTROT, M., SIDAROS, K., ENGBERG, A., HERNING, M., … ROSTRUP, E. (2009). Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates. NeuroImage, 44(1), 1-8. doi:10.1016/j.neuroimage.2008.08.030Ashburner, J., & Friston, K. J. (2000). Voxel-Based Morphometry—The Methods. NeuroImage, 11(6), 805-821. doi:10.1006/nimg.2000.0582Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage, 14(1), 21-36. doi:10.1006/nimg.2001.0786Giacino, J. T., Ashwal, S., Childs, N., Cranford, R., Jennett, B., Katz, D. I., … Zasler, N. D. (2002). The minimally conscious state: Definition and diagnostic criteria. Neurology, 58(3), 349-353. doi:10.1212/wnl.58.3.349Gispert, J. ., Pascau, J., Reig, S., Martínez-Lázaro, R., Molina, V., García-Barreno, P., & Desco, M. (2003). Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. NeuroImage, 19(3), 601-612. doi:10.1016/s1053-8119(03)00072-7Ashburner, J., & Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7(4), 254-266. doi:10.1002/(sici)1097-0193(1999)7:43.0.co;2-gTzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15(1), 273-289. doi:10.1006/nimg.2001.0978Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage, 15(4), 870-878. doi:10.1006/nimg.2001.1037LAUREYS, S., LEMAIRE, C., MAQUET, P., PHILLIPS, C., & FRANCK, G. (1999). Cerebral metabolism during vegetative state and after recovery to consciousness. Journal of Neurology, Neurosurgery & Psychiatry, 67(1), 121-122. doi:10.1136/jnnp.67.1.121Tommasino, C., Grana, C., Lucignani, G., Torri, G., & Fazio, F. (1995). Regional Cerebral Metabolism of Glucose in Comatose and Vegetative State Patients. Journal of Neurosurgical Anesthesiology, 7(2), 109-116. doi:10.1097/00008506-199504000-00006ANDERSON, C. V., WOOD, D.-M. G., BIGLER, E. D., & BLATTER, D. D. (1996). Lesion Volume, Injury Severity, and Thalamic Integrity following Head Injury. Journal of Neurotrauma, 13(2), 59-65. doi:10.1089/neu.1996.13.59Ge, Y., Patel, M. B., Chen, Q., Grossman, E. J., Zhang, K., Miles, L., … Grossman, R. I. (2009). Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Injury, 23(7-8), 666-674. doi:10.1080/02699050903014899Uzan, M. (2003). Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. Journal of Neurology, Neurosurgery & Psychiatry, 74(1), 33-38. doi:10.1136/jnnp.74.1.33OMMAYA, A. K., & GENNARELLI, T. A. (1974). CEREBRAL CONCUSSION AND TRAUMATIC UNCONSCIOUSNESS. Brain, 97(1), 633-654. doi:10.1093/brain/97.1.633Giacino, J., & Whyte, J. (2005). The Vegetative and Minimally Conscious States. Journal of Head Trauma Rehabilitation, 20(1), 30-50. doi:10.1097/00001199-200501000-00005Zeman, A. (2001). Consciousness. Brain, 124(7), 1263-1289. doi:10.1093/brain/124.7.1263Kinney, H. C., Korein, J., Panigrahy, A., Dikkes, P., & Goode, R. (1994). Neuropathological Findings in the Brain of Karen Ann Quinlan -- The Role of the Thalamus in the Persistent Vegetative State. New England Journal of Medicine, 330(21), 1469-1475. doi:10.1056/nejm199405263302101Saeeduddin Ahmed, Rex Bierley, Java. (2000). Post-traumatic amnesia after closed head injury: a review of the literature and some suggestions for further research. Brain Injury, 14(9), 765-780. doi:10.1080/026990500421886Wilson, J. T., Hadley, D. M., Wiedmann, K. D., & Teasdale, G. M. (1995). Neuropsychological consequences of two patterns of brain damage shown by MRI in survivors of severe head injury. Journal of Neurology, Neurosurgery & Psychiatry, 59(3), 328-331. doi:10.1136/jnnp.59.3.328Wilson, J. T., Teasdale, G. M., Hadley, D. M., Wiedmann, K. D., & Lang, D. (1994). Post-traumatic amnesia: still a valuable yardstick. Journal of Neurology, Neurosurgery & Psychiatry, 57(2), 198-201. doi:10.1136/jnnp.57.2.198Fearing, M. A., Bigler, E. D., Wilde, E. A., Johnson, J. L., Hunter, J. V., Xiaoqi Li, … Levin, H. S. (2008). Morphometric MRI Findings in the Thalamus and Brainstem in Children After Moderate to Severe Traumatic Brain Injury. Journal of Child Neurology, 23(7), 729-737. doi:10.1177/0883073808314159Little, D. M., Kraus, M. F., Joseph, J., Geary, E. K., Susmaras, T., Zhou, X. J., … Gorelick, P. B. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558-564. doi:10.1212/wnl.0b013e3181cff5d

    La tomografía de emisión de positrones en el estudio del traumatismo craneoencefálico severo

    Get PDF
    Tesis Univ. Granada. Departamento de Radiología y Medicina Física. Leída el 12 de julio de 201

    Clinical and neuroimaging characterization of two C9orf72-positive siblings with amyotrophic lateral sclerosis and schizophrenia

    No full text
    4 páginashe research leading to these results has received funding from Instituto de Investigación Sanitaria La Fe (2013/0332, PI JFVC/ TS), from Instituto de Salud Carlos III (ISCIII, PI12/0946, PI TS) and from Ministerio de Economía y Competitividad (SAF2014-59469-R; PI: JPT). The Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and the Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) are initiatives from the ISCIII.Peer reviewe

    Presenilin-1 Mutations Are a Cause of Primary Lateral Sclerosis-Like Syndrome

    No full text
    6 páginas, 2 figurasBackground and purpose: Primary lateral sclerosis (PLS) is a progressive upper motor neuron (UMN) disorder. It is debated whether PLS is part of the amyotrophic lateral sclerosis (ALS) spectrum, or a syndrome encompassing different neurodegenerative diseases. Recently, new diagnostic criteria for PLS have been proposed. We describe four patients of two pedigrees, meeting definite PLS criteria and harboring two different mutations in presenilin 1 (PSEN1). Methods: Patients underwent neurological and neuropsychological examination, MRI, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), amyloid-related biomarkers, and next-generation sequencing (NGS) testing. Results: Four patients, aged 25-45 years old, presented with a progressive UMN syndrome meeting clinical criteria of definite PLS. Cognitive symptoms and signs were mild or absent during the first year of the disease but appeared or progressed later in the disease course. Brain MRI showed microbleeds in two siblings, but iron-related hypointensities in the motor cortex were absent. Brain FDG-PET showed variable areas of hypometabolism, including the motor cortex and frontotemporal lobes. Amyloid deposition was confirmed with either cerebrospinal fluid (CSF) or imaging biomarkers. Two heterozygous likely pathogenic mutations in PSEN1 (p.Pro88Leu and p.Leu166Pro) were found in the NGS testing. Conclusion: Clinically defined PLS is a syndrome encompassing different neurodegenerative diseases. The NGS testing should be part of the diagnostic workup in patients with PLS, at least in those with red flags, such as early-onset, cognitive impairment, and/or family history of neurodegenerative diseases.This project was funded by the Instituto de Salud Carlos III (ISCIII)–ERDF (Grants PI19/01178 to TS), Generalitat Valenciana (Grant PROMETEO 2018/135 to TS), STOPELA, and Roche. JV-C was funded by a grant of the ISCIII (JR19/00030).Peer reviewe
    corecore