702 research outputs found
Recent progress with hot carrier solar cells
Hot carrier solar cells offer one of the most promising options for high performance “third generation” photovoltaic devices. For successful operation, these need to be thin, strongly absorbing, radioactively efficient devices in a simple 2-terminal configuration. Nonetheless, they offer potential performance close to the maximum possible for solar conversion, equivalent to a multi-cell stack of six or more tandem cells possibly without some of the limitations, such as spectral sensitivity. However, hot carrier cells offer some quite fundamental challenges in implementation that our team is addressing in an internationally collaborative effort
NLRP3 inflammasome activation and symptom burden in KRAS-mutated CMML patients is reverted by IL-1 blocking therapy
Chronic myelomonocytic leukemia (CMML) is frequently associated with mutations in the rat sarcoma gene (RAS), leading to worse prognosis. RAS mutations result in active RAS-GTP proteins, favoring myeloid cell proliferation and survival and inducing the NLRP3 inflammasome together with the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which promote caspase-1 activation and interleukin (IL)-1(3 release. Here, we report, in a cohort of CMML patients with mutations in KRAS, a constitutive activation of the NLRP3 inflammasome in monocytes, evidenced by ASC oligomerization and IL-1(3 release, as well as a specific inflammatory cytokine signature. Treatment of a CMML patient with a KRASG12D mutation using the IL-1 receptor blocker anakinra inhibits NLRP3 inflammasome activation, reduces monocyte count, and improves the patient's clinical status, enabling a stem cell transplant. This reveals a basal inflammasome activation in RAS-mutated CMML patients and suggests potential therapeutic applications of NLRP3 and IL-1 blockers
The impact of socioeconomic and phenotypic traits on self-perception of ethnicity in Latin America
Self-perception of ethnicity is a complex social trait shaped by both, biological and non-biological factors. We developed a comprehensive analysis of ethnic self-perception (ESP) on a large sample of Latin American mestizos from five countries, differing in age, socio-economic and education context, external phenotypic attributes and genetic background. We measured the correlation of ESP against genomic ancestry, and the influence of physical appearance, socio-economic context, and education on the distortion observed between both. Here we show that genomic ancestry is correlated to aspects of physical appearance, which in turn affect the individual ethnic self-perceived ancestry. Also, we observe that, besides the significant correlation among genomic ancestry and ESP, specific physical or socio-economic attributes have a strong impact on self-perception. In addition, the distortion among ESP and genomic ancestry differs across age ranks/countries, probably suggesting the underlying effect of past public policies regarding identity. Our results indicate that individuals’ own ideas about its origins should be taken with caution, especially in aspects of modern life, including access to work, social policies, and public health key decisions such as drug administration, therapy design, and clinical trials, among others
Rationale and design of the Concordance study between FFR and iFR for the assessment of lesions in the left main coronary artery. The ILITRO-EPIC-07 Trial
Introduction and objectives: Patients with left main coronary artery (LMCA) stenosis have been excluded from the trials that support the non-inferiority of the instantaneous wave-free ratio (iFR) compared to the fractional flow reserve (FFR) in the decision-making process of coronary revascularization. This study proposes to prospectively assess the concordance between the two indices in LMCA lesions and to validate the iFR cut-off value of 0.89 for clinical use. Methods: National, prospective, and observational multicenter registry of 300 consecutive patients with intermediate lesions in the LMCA (angiographic stenosis, 25% to 60%. A pressure gudiewire study and determination of the RFF and the iFR will be performed: in the event of a negative concordant result (FFR > 0.80/iFR > 0.89), no treatment will be performed; in case of a positive concordant result (FFR 0.80/iFR 0.89), an intravascular echocardiography will be performed and revascularization will be delayed if the minimum lumen area is > 6 mm(2). The primary clinical endpoint will be a composite of cardiovascular death, LMCA lesion-related non-fatal infarction or need for revascularization of the LMCA lesion at 12 months. Conclusions: Confirm that an iFR-guided decision-making process in patients with intermediate LMCA stenosis is clinically safe and would have a significant clinical impact. Also, justify its systematic use when prescribing treatment in these potentially high-risk patients
Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance
Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum(ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPK alpha 1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.Peer reviewe
A Genomic Snapshot of the SARS-CoV-2 Pandemic in the Balearic Islands
7 páginas, 3 figurasObjective: To analyze the SARS-CoV-2 genomic epidemiology in the Balearic Islands, a unique setting in which the course of the pandemic has been influenced by a complex interplay between insularity, severe social restrictions and tourism travels. Methods: Since the onset of the pandemic, more than 2,700 SARS-CoV-2 positive respiratory samples have been randomly selected and sequenced in the Balearic Islands. Genetic diversity of circulating variants was assessed by lineage assignment of consensus whole genome sequences with PANGOLIN and investigation of additional spike mutations. Results: Consensus sequences were assigned to 46 different PANGO lineages and 75% of genomes were classified within a VOC, VUI, or VUM variant according to the WHO definitions. Highest genetic diversity was documented in the island of Majorca (42 different lineages detected). Globally, lineages B.1.1.7 and B.1.617.2/AY.X were identified as the 2 major lineages circulating in the Balearic Islands during the pandemic, distantly followed by lineages B.1.177/B.1.177.X. However, in Ibiza/Formentera lineage distribution was slightly different and lineage B.1.221 was the third most prevalent. Temporal distribution analysis showed that B.1 and B.1.5 lineages dominated the first epidemic wave, lineage B.1.177 dominated the second and third, and lineage B.1.617.2 the fourth. Of note, lineage B.1.1.7 became the most prevalent circulating lineage during first half of 2021; however, it was not associated with an increased in COVID-19 cases likely due to severe social restrictions and limited travels. Additional spike mutations were rarely documented with the exception of mutation S:Q613H which has been detected in several genomes (n = 25) since July 2021. Conclusion: Virus evolution, mainly driven by the acquisition and selection of spike substitutions conferring biological advantages, social restrictions, and size population are apparently key factors for explaining the epidemic patterns registered in the Balearic Islands.This work has been supported by the Instituto de Salud Carlos III of Spain through the project COV20/00140: Addressing unknowns of COVID-19 transmission and infection combining pathogen genomics and epidemiology to inform public health interventions and European Union HERA Incubator program
through grant ECDC/HERA/2021/024 ECD.12241. CL-C was supported by a Juan Rodés contract (JR19/00003) from Instituto de Salud Carlos III.Peer reviewe
CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative
Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
Waveform Modelling for the Laser Interferometer Space Antenna
LISA, the Laser Interferometer Space Antenna, will usher in a new era in
gravitational-wave astronomy. As the first anticipated space-based
gravitational-wave detector, it will expand our view to the millihertz
gravitational-wave sky, where a spectacular variety of interesting new sources
abound: from millions of ultra-compact binaries in our Galaxy, to mergers of
massive black holes at cosmological distances; from the beginnings of inspirals
that will venture into the ground-based detectors' view to the death spiral of
compact objects into massive black holes, and many sources in between. Central
to realising LISA's discovery potential are waveform models, the theoretical
and phenomenological predictions of the pattern of gravitational waves that
these sources emit. This white paper is presented on behalf of the Waveform
Working Group for the LISA Consortium. It provides a review of the current
state of waveform models for LISA sources, and describes the significant
challenges that must yet be overcome.Comment: 239 pages, 11 figures, white paper from the LISA Consortium Waveform
Working Group, invited for submission to Living Reviews in Relativity,
updated with comments from communit
- …