26 research outputs found
Prediction of NAAC Grades for Affiliated Institute with the help of Statistical MultiCriteria Decision Analysis
National Assessment and Accreditation Council is an impartial group of the University Grants Commission (UGC) of India, mounted in 1994. It has taken the duty of assessing and accrediting faculties and universities in India to encourage the instructional surroundings for the development of excellence in teaching, learning, and discovery in superior training. In those missions, NAAC acts a dynamic role. NAAC has been worried about reforming its ongoing Valuation and Certification policies, grounded on its arena, its shared statistics with different International Quality Assurance Agencies, and the best necessities within side the worlds converting the state of affairs over the progressive training development. In this paper, a new mathematical model is developed to explore the NAAC rating of a well-known Engineering College, considering nine more well-known Engineering Colleges. The system is characterized by NAAC Accreditation Criteria using Multi-Criteria Decision Making Methods, Statistics, and Group Decision Makin
Metaheuristic Optimization Techniques Used in Controlling of an Active Magnetic Bearing System for High-Speed Machining Application
Smart control tactics, wider stability region, rapid reaction time, and high-speed performance are essential requirements for any controller to provide a smooth, vibrationless, and efficient performance of an in-house fabricated active magnetic bearing (AMB) system. In this manuscript, three pre-eminent population-based metaheuristic optimization techniques: Genetic algorithm (GA), Particle swarm optimization (PSO), and Cuckoo search algorithm (CSA) are implemented one by one, to calculate optimized gain parameters of PID controller for the proposed closed-loop active magnetic bearing (AMB) system. Performance indices or, objective functions on which these optimization techniques are executed are integral absolute error (IAE), integral square error (ISE), integral time multiplied absolute error (ITAE), and integral time multiplied square error (ITSE). The significance of an optimization technique and objective function can obtain only by implementing it. As a result, several comparisons are made based on statistical performance, time domain, frequency response behavior, and algorithm execution time. Finally, the applicability of optimization strategies in addition to the performance indices is determined with the aid of the comparative analysis. That could assist in choosing a suitable optimization technique along with a performance index for a high-speed application of an active magnetic bearing system
Green Chemo-Prevention: An Integrated Review Between Agriculture and Medicine
The isothiocyanate's chemoprevention properties are reported to be present in cruciferous veggies through a variety of mechanisms. Sulforaphane, a phytochemical found in green leafy vegetables, has shown promise in the prevention and treatment of several cancers, including those of the prostate, breast, colon, skin, urinary bladder, and oral cavities. These malignancies include those that affect these organs. This substance is naturally present in broccoli sprouts, kale, cabbage, cauliflower, and garden cress. Broccoli should be a regular part of your diet because it contains a variety of bioactive substances such as vitamins, polyphenols, sulfides, glucosinolates, and antioxidants. Sulforaphane may be used as an inexpensive replacement or dietary supplement for chemo preventive therapy, according to the findings of epidemiological and experimental studies.
Phase 2 detoxification enzymes like glutathione transferases, epoxide hydrolase, NAD(P)H: quinone reductase, and glucuronosyltransferases, as well as epoxide hydrolase and epoxide hydrolase, are produced when the body is stimulated. This is a useful tactic for preventing cancer and fending off the harm that electrophiles and reactive oxygen species can cause. Isothiocyanates are widely distributed in the Cruciferae family and Brassica genus of food plants, which include both broccoli and cauliflower. The most typical form of these substances is glucosinolate precursors. Sulforaphane and 4-methylsulfinylbutyl isothiocyanate, two of these isothiocyanates, are particularly powerful inducers of phase 2 enzymes.
It is feasible to successfully extract glucosinolates and isothiocyanates from plants by homogenizing them at a temperature of around 50 degrees Celsius in a solution of equal parts dimethyl sulfoxide, dimethylformamide, and acetonitrile. This method avoids the hydrolysis of glucosinolates by myrosinase.
It's interesting to note that glucoraphanin, the precursor to sulforaphane, is 10â100 times more abundant in 3-day-old sprouts of various cruciferous vegetables, including broccoli and cauliflower than it is in fully grown veggies. Dimethylbenz(a)anthracene-treated rats displayed notable reductions in mammary tumor occurrence, quantity, and rate of growth when fed extracts from 3-day-old broccoli sprouts. These extracts' primary enzyme-inducing components were either glucoraphanin or sulforaphane. As a result, crucifer sprouts might provide an equivalent amount of cancer prevention to eating far larger quantities of the same mature vegetable species
Urgent Need for Field Surveys of Coronaviruses in Southeast Asia to Understand the SARS-CoV-2 Phylogeny and Risk Assessment for Future Outbreaks
Phylogenetic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is focused on a single isolate of bat coronaviruses (bat CoVs) which does not adequately represent genetically related coronaviruses (CoVs) [...
The structural basis of accelerated host cell entry by SARS-CoV-2 dagger
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic coronavirus disease 2019 (COVID-19) that exhibits an overwhelming contagious capacity over other human coronaviruses (HCoVs). This structural snapshot describes the structural bases underlying the pandemic capacity of SARS-CoV-2 and explains its fast motion over respiratory epithelia that allow its rapid cellular entry. Based on notable viral spike (S) protein features, we propose that the flat sialic acid-binding domain at the N-terminal domain (NTD) of the S1 subunit leads to more effective first contact and interaction with the sialic acid layer over the epithelium, and this, in turn, allows faster viral âsurfingâ of the epithelium and receptor scanning by SARS-CoV-2. Angiotensin-converting enzyme 2 (ACE-2) protein on the epithelial surface is the primary entry receptor for SARS-CoV-2, and proteinâprotein interaction assays demonstrate high-affinity binding of the spike protein (S protein) to ACE-2. To date, no high-frequency mutations were detected at the C-terminal domain of the S1 subunit in the S protein, where the receptor-binding domain (RBD) is located. Tight binding to ACE-2 by a conserved viral RBD suggests the ACE2-RBD interaction is likely optimal. Moreover, the viral S subunit contains a cleavage site for furin and other proteases, which accelerates cell entry by SARS-CoV-2. The model proposed here describes a structural basis for the accelerated host cell entry by SARS-CoV-2 relative to other HCoVs and also discusses emerging hypotheses that are likely to contribute to the development of antiviral strategies to combat the pandemic capacity of SARS-CoV-2
Possible Transmission Flow of SARS-CoV-2 Based on ACE2 Features
Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that is engendering the severe coronavirus disease 2019 (COVID-19) pandemic. The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 binds to the three sub-domains viz. amino acids (aa) 22-42, aa 79-84, and aa 330-393 of ACE2 on human cells to initiate entry. It was reported earlier that the receptor utilization capacity of ACE2 proteins from different species, such as cats, chimpanzees, dogs, and cattle, are different. A comprehensive analysis of ACE2 receptors of nineteen species was carried out in this study, and the findings propose a possible SARS-CoV-2 transmission flow across these nineteen species
A unique view of SARS-COV-2 through the lens of ORF8 protein
Immune evasion is one of the unique characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) attributed to its ORF8 protein. This protein modulates the adaptive host immunity through down-regulation of MHC-1 (Major Histocompatibility Complex) molecules and innate immune responses by surpassing the host\u27s interferon-mediated antiviral response. To understand the host\u27s immune perspective in reference to the ORF8 protein, a comprehensive study of the ORF8 protein and mutations possessed by it have been performed. Chemical and structural properties of ORF8 proteins from different hosts, such as human, bat, and pangolin, suggest that the ORF8 of SARS-CoV-2 is much closer to ORF8 of Bat RaTG13-CoV than to that of Pangolin-CoV. Eighty-seven mutations across unique variants of ORF8 in SARS-CoV-2 can be grouped into four classes based on their predicted effects (Hussain et al., 2021) [1]. Based on the geo-locations and timescale of sample collection, a possible flow of mutations was built. Furthermore, conclusive flows of amalgamation of mutations were found upon sequence similarity analyses and consideration of the amino acid conservation phylogenies. Therefore, this study seeks to highlight the uniqueness of the rapidly evolving SARS-CoV-2 through the ORF8