47 research outputs found

    cAMP-mediated secretion of brain-derived neurotrophic factor in developing airway smooth muscle

    Get PDF
    AbstractModerate hyperoxic exposure in preterm infants contributes to subsequent airway dysfunction and to risk of developing recurrent wheeze and asthma. The regulatory mechanisms that can contribute to hyperoxia-induced airway dysfunction are still under investigation. Recent studies in mice show that hyperoxia increases brain-derived neurotrophic factor (BDNF), a growth factor that increases airway smooth muscle (ASM) proliferation and contractility. We assessed the mechanisms underlying effects of moderate hyperoxia (50% O2) on BDNF expression and secretion in developing human ASM. Hyperoxia increased BDNF secretion, but did not alter endogenous BDNF mRNA or intracellular protein levels. Exposure to hyperoxia significantly increased [Ca2+]i responses to histamine, an effect blunted by the BDNF chelator TrkB-Fc. Hyperoxia also increased ASM cAMP levels, associated with reduced PDE4 activity, but did not alter protein kinase A (PKA) activity or adenylyl cyclase mRNA levels. However, 50% O2 increased expression of Epac2, which is activated by cAMP and can regulate protein secretion. Silencing RNA studies indicated that Epac2, but not Epac1, is important for hyperoxia-induced BDNF secretion, while PKA inhibition did not influence BDNF secretion. In turn, BDNF had autocrine effects of enhancing ASM cAMP levels, an effect inhibited by TrkB and BDNF siRNAs. Together, these novel studies suggest that hyperoxia can modulate BDNF secretion, via cAMP-mediated Epac2 activation in ASM, resulting in a positive feedback effect of BDNF-mediated elevation in cAMP levels. The potential functional role of this pathway is to sustain BDNF secretion following hyperoxic stimulus, leading to enhanced ASM contractility and proliferation

    An Official American Thoracic Society Workshop Report: Evaluation and Management of Asthma in the Elderly

    Get PDF
    Asthma in the elderly (>65 yr old) is common and associated with higher morbidity and mortality than asthma in younger patients. The poor outcomes in this group are due, in part, to underdiagnosis and undertreatment. There are a variety of factors related to aging itself that affect the presentation of asthma in the elderly and influence diagnosis and management. Structural changes in the aging lung superimposed on structural changes due to asthma itself can worsen the disease and physiologic function. Changes in the aging immune system influence the cellular composition and function in asthmatic airways. These processes and differences from younger individuals with asthma are not well understood. Phenotypes of asthma in the elderly have not been clearly delineated, but it is likely that age of onset and overlap with chronic obstructive pulmonary disease impact disease characteristics. Physiologic tests and biomarkers used to diagnose and follow asthma in the elderly are generally similar to testing in younger individuals; however, whether they should be modified in aging has not been established. Confounding influences, such as comorbidities (increasing the risk of polypharmacy), impaired cognition and motor skills, psychosocial effects of aging, and age-related adverse effects of medications, impact both diagnosis and treatment of asthma in the elderly. Future efforts to understand asthma in the elderly must include geriatric-specific methodology to diagnose, characterize, monitor, and treat their disease

    Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    Get PDF
    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics

    Gold nanoparticles and airway hyperreactivity

    No full text

    Sodium-calcium exchange in intracellular calcium handling of human airway smooth muscle.

    Get PDF
    Enhanced airway contractility following inflammation by cytokines such as tumor necrosis factor alpha (TNFα) or interleukin-13 (IL-13) involves increased intracellular Ca(2+) ([Ca(2+)](i)) levels in airway smooth muscle (ASM). In ASM, plasma membrane Ca(2+) fluxes form a key component of [Ca(2+)](i) regulation. There is now growing evidence that the bidirectional plasma membrane Na(+)/Ca(2+) exchanger (NCX) contributes to ASM [Ca(2+)](i) regulation. In the present study, we examined NCX expression and function in human ASM cells under normal conditions, and following exposure to TNFα or IL-13. Western blot analysis showed significant expression of the NCX1 isoform, with increased NCX1 levels by both cytokines, effects blunted by inhibitors of nuclear factor NF-κB or mitogen-activated protein kinase. Cytokine-mediated increase in NCX1 involved enhanced transcription followed by protein synthesis. NCX2 and NCX3 remained undetectable even in cytokine-stimulated ASM. In fura-2 loaded human ASM cells, NCX-mediated inward Ca(2+) exchange as well as outward exchange (measured as rates of change in [Ca(2+)](i)) was elicited by altering extracellular Na(+) and Ca(2+) levels. Contribution of NCX was verified by measuring [Na(+)](i) using the fluorescent Na(+) indicator SBFI. NCX-mediated inward exchange was verified by demonstrating prevention of rising [Ca(2+)](i) or falling [Na(+)](i) in the presence of the NCX inhibitor KBR7943. Inward exchange-mode NCX was increased by both TNFα and IL-13 to a greater extent than outward exchange. NCX siRNA transfection substantially blunted outward exchange and inward exchange modes. Finally, inhibition of NCX expression or function blunted peak [Ca(2+)](i) and rate of fall of [Ca(2+)](i) following histamine stimulation. These data suggest that NCX-mediated Ca(2+) fluxes normally exist in human ASM (potentially contributing to rapid Ca(2+) fluxes), and contribute to enhanced [Ca(2+)](i) regulation in airway inflammation
    corecore