30 research outputs found

    Long-term Graft Survival and Graft Function Following Pregnancy in Kidney Transplant Recipients: A Systematic Review and Meta-analysis

    Get PDF
    BACKGROUND: The incidence of pregnancy in kidney transplantation (KT) recipients is increasing. Studies report that the incidence of graft loss (GL) during pregnancy is low, but less data are available on long-term effects of pregnancy on the graft. METHODS: Therefore, we performed a meta-analysis and systematic review on GL and graft function, measured by serum creatinine (SCr), after pregnancy in KT rec

    Developmental programming in human umbilical cord vein endothelial cells following fetal growth restriction

    Get PDF
    Background: Fetal growth restriction (FGR) is associated with an increased susceptibility for various noncommunicable diseases in adulthood, including cardiovascular and renal disease. During FGR, reduced uteroplacental blood flow, oxygen and nutrient supply to the fetus are hypothesized to detrimentally influence cardiovascular and renal programming. This study examined whether developmental programming profiles, especially related to the cardiovascular and renal system, differ in human umbilical vein endothelial cells (HUVECs) collected from pregnancies complicated by placental insufficiency-induced FGR compared to normal growth pregnancies. Our approach, involving transcriptomic profiling by RNA-sequencing and gene set enrichment analysis focused on cardiovascular and renal gene sets and targeted DNA methylation assays, contributes to the identification of targets underlying long-term cardiovascular and renal diseases. Results: Gene set enrichment analysis showed several downregulated gene sets, most of them involved in immune or inflammatory pathways or cell cycle pathways. seven of the 22 significantly upregulated gene sets related to kidney development and four gene sets involved with cardiovascular health and function were downregulated in FGR (n = 11) versus control (n = 8). Transcriptomic profiling by RNA-sequencing revealed downregulated expression of LGALS1, FPR3 and NRM and upregulation of lincRNA RP5-855F14.1 in FGR compared to controls. DNA methylation was similar for LGALS1 between study groups, but relative hypomethylation of FPR3 and hypermethylation of NRM were present in FGR, especially in male offspring. Absolute differences in methylation were, however, small. Conclusion: This study showed upregulation of gene sets related to renal development in HUVECs collected from pregnancies complicated by FGR compared to control donors. The differentially expressed gene sets related to cardiovascular function and health might be in line with the downregulated expression of NRM and upregulated expression of lincRNA RP5-855F14.1 in FG

    Pregnancy as a critical window for blood pressure regulation in mother and child : programming and reprogramming

    No full text
    Pregnancy is a critical time for long-term blood pressure regulation in both mother and child. Pregnancies complicated by placental insufficiency, resulting in preeclampsia and intrauterine growth restriction, are associated with a threefold increased risk of the mother to develop hypertension later in life. In addition, these complications create an adverse intrauterine environment, which programs the fetus and the second generation to develop hypertension in adult life. Female offspring born to a pregnancy complicated by placental insufficiency are at risk for pregnancy complications during their own pregnancies as well, resulting in a vicious circle with programmed risk for hypertension passing from generation to generation. Here, we review the epidemiology and mechanisms leading to the altered programming of blood pressure trajectories after pregnancies complicated by placental insufficiency. Although the underlying mechanisms leading to hypertension remain the subject of investigation, several abnormalities in angiotensin sensitivity, sodium handling, sympathetic activity, endothelial function and metabolic pathways are found in the mother after exposure to placental insufficiency. In the child, epigenetic modifications and disrupted organ development play a crucial role in programming of hypertension. We emphasize that pregnancy can be viewed as a window of opportunity to improve long-term cardiovascular health of both mother and child, and outline potential gains expected of improved preconceptional, perinatal and postnatal care to reduce development of hypertension and the burden of cardiovascular disease in later in life. Perinatal therapies aimed at reprogramming hypertension as a promising strategy to break the vicious circle of intergenerational programming of hypertension. This article is protected by copyright. All rights reserved

    Pregnancy as a critical window for blood pressure regulation in mother and child : programming and reprogramming

    No full text
    Pregnancy is a critical time for long-term blood pressure regulation in both mother and child. Pregnancies complicated by placental insufficiency, resulting in preeclampsia and intrauterine growth restriction, are associated with a threefold increased risk of the mother to develop hypertension later in life. In addition, these complications create an adverse intrauterine environment, which programs the fetus and the second generation to develop hypertension in adult life. Female offspring born to a pregnancy complicated by placental insufficiency are at risk for pregnancy complications during their own pregnancies as well, resulting in a vicious circle with programmed risk for hypertension passing from generation to generation. Here, we review the epidemiology and mechanisms leading to the altered programming of blood pressure trajectories after pregnancies complicated by placental insufficiency. Although the underlying mechanisms leading to hypertension remain the subject of investigation, several abnormalities in angiotensin sensitivity, sodium handling, sympathetic activity, endothelial function and metabolic pathways are found in the mother after exposure to placental insufficiency. In the child, epigenetic modifications and disrupted organ development play a crucial role in programming of hypertension. We emphasize that pregnancy can be viewed as a window of opportunity to improve long-term cardiovascular health of both mother and child, and outline potential gains expected of improved preconceptional, perinatal and postnatal care to reduce development of hypertension and the burden of cardiovascular disease in later in life. Perinatal therapies aimed at reprogramming hypertension as a promising strategy to break the vicious circle of intergenerational programming of hypertension. This article is protected by copyright. All rights reserved

    Sildenafil during Pregnancy : A Preclinical Meta-Analysis on Fetal Growth and Maternal Blood Pressure

    No full text
    Sildenafil is a new approach to treat fetal growth restriction (FGR) and preeclampsia. We performed a systematic meta-analysis to evaluate effects of sildenafil. Our search identified 22 animal studies (mouse, rat, rabbit, sheep, and guinea pigs) and 2 human randomized controlled trials. Data were pooled using ratio of means and mean differences with 95% confidence intervals for fetal growth and maternal blood pressure, respectively. Meta-regression analyses were performed for study-related factors that might affect efficacy of sildenafil, including the model used (healthy pregnancy versus FGR/preeclampsia) and route of administration. Dose-response curves with dose per metabolic weight (mg/kg0.75 per 24 hours) were fitted using splines. Our analyses show that sildenafil increases fetal growth during FGR/preeclampsia pregnancy compared with healthy pregnancy (1.10 [1.06-1.13] versus 1.03 [0.99-1.06]; P=0.006). There was no significant effect on fetal growth in the absence of FGR/preeclampsia. Effects were similar among different species and largest after oral and continuous administration. There was a positive relation between dose and fetal growth up to a human equivalent dose of ≈450 mg/d. A significant blood pressure-lowering effect of sildenafil is present during FGR/preeclampsia pregnancy only (-19 [-25 to -13] mm Hg; P<0.01), with the effect size being highly dependent on baseline blood pressure and without effect in the absence of hypertension. This meta-analysis supports that sildenafil improves fetal growth and maternal blood pressure regulation during FGR and preeclampsia pregnancy. The greatest beneficial effects on fetal growth are with dosages greater than those currently used in human studies

    Sildenafil during Pregnancy : A Preclinical Meta-Analysis on Fetal Growth and Maternal Blood Pressure

    No full text
    Sildenafil is a new approach to treat fetal growth restriction (FGR) and preeclampsia. We performed a systematic meta-analysis to evaluate effects of sildenafil. Our search identified 22 animal studies (mouse, rat, rabbit, sheep, and guinea pigs) and 2 human randomized controlled trials. Data were pooled using ratio of means and mean differences with 95% confidence intervals for fetal growth and maternal blood pressure, respectively. Meta-regression analyses were performed for study-related factors that might affect efficacy of sildenafil, including the model used (healthy pregnancy versus FGR/preeclampsia) and route of administration. Dose-response curves with dose per metabolic weight (mg/kg0.75 per 24 hours) were fitted using splines. Our analyses show that sildenafil increases fetal growth during FGR/preeclampsia pregnancy compared with healthy pregnancy (1.10 [1.06-1.13] versus 1.03 [0.99-1.06]; P=0.006). There was no significant effect on fetal growth in the absence of FGR/preeclampsia. Effects were similar among different species and largest after oral and continuous administration. There was a positive relation between dose and fetal growth up to a human equivalent dose of ≈450 mg/d. A significant blood pressure-lowering effect of sildenafil is present during FGR/preeclampsia pregnancy only (-19 [-25 to -13] mm Hg; P<0.01), with the effect size being highly dependent on baseline blood pressure and without effect in the absence of hypertension. This meta-analysis supports that sildenafil improves fetal growth and maternal blood pressure regulation during FGR and preeclampsia pregnancy. The greatest beneficial effects on fetal growth are with dosages greater than those currently used in human studies

    Developmental programming in human umbilical cord vein endothelial cells following fetal growth restriction

    Get PDF
    BACKGROUND: Fetal growth restriction (FGR) is associated with an increased susceptibility for various noncommunicable diseases in adulthood, including cardiovascular and renal disease. During FGR, reduced uteroplacental blood flow, oxygen and nutrient supply to the fetus are hypothesized to detrimentally influence cardiovascular and renal programming. This study examined whether developmental programming profiles, especially related to the cardiovascular and renal system, differ in human umbilical vein endothelial cells (HUVECs) collected from pregnancies complicated by placental insufficiency-induced FGR compared to normal growth pregnancies. Our approach, involving transcriptomic profiling by RNA-sequencing and gene set enrichment analysis focused on cardiovascular and renal gene sets and targeted DNA methylation assays, contributes to the identification of targets underlying long-term cardiovascular and renal diseases.RESULTS: Gene set enrichment analysis showed several downregulated gene sets, most of them involved in immune or inflammatory pathways or cell cycle pathways. seven of the 22 significantly upregulated gene sets related to kidney development and four gene sets involved with cardiovascular health and function were downregulated in FGR (n = 11) versus control (n = 8). Transcriptomic profiling by RNA-sequencing revealed downregulated expression of LGALS1, FPR3 and NRM and upregulation of lincRNA RP5-855F14.1 in FGR compared to controls. DNA methylation was similar for LGALS1 between study groups, but relative hypomethylation of FPR3 and hypermethylation of NRM were present in FGR, especially in male offspring. Absolute differences in methylation were, however, small.CONCLUSION: This study showed upregulation of gene sets related to renal development in HUVECs collected from pregnancies complicated by FGR compared to control donors. The differentially expressed gene sets related to cardiovascular function and health might be in line with the downregulated expression of NRM and upregulated expression of lincRNA RP5-855F14.1 in FGR samples; NRM is involved in cardiac remodeling, and lincRNAs are correlated with cardiovascular diseases. Future studies should elucidate whether the downregulated LGALS1 and FPR3 expressions in FGR are angiogenesis-modulating regulators leading to placental insufficiency-induced FGR or whether the expression of these genes can be used as a biomarker for increased cardiovascular risk. Altered DNA methylation might partly underlie FPR3 and NRM differential gene expression differences in a sex-dependent manner.</p

    Neonatal cardiac hypertrophy : the role of hyperinsulinism—a review of literature

    No full text
    Hypertrophic cardiomyopathy (HCM) in neonates is a rare and heterogeneous disorder which is characterized by hypertrophy of heart with histological and functional disruption of the myocardial structure/composition. The prognosis of HCM depends on the underlying diagnosis. In this review, we emphasize the importance to consider hyperinsulinism in the differential diagnosis of HCM, as hyperinsulinism is widely associated with cardiac hypertrophy (CH) which cannot be distinguished from HCM on echocardiographic examination. We supply an overview of the incidence and treatment strategies of neonatal CH in a broad spectrum of hyperinsulinemic diseases. Reviewing the literature, we found that CH is reported in 13 to 44% of infants of diabetic mothers, in approximately 40% of infants with congenital hyperinsulinism, in 61% of infants with leprechaunism and in 48 to 61% of the patients with congenital generalized lipodystrophy. The correct diagnosis is of importance since there is a large variation in prognoses and there are various strategies to treat CH in hyperinsulinemic diseases. Conclusion: The relationship between CH and hyperinsulism has implications for clinical practice as it might help to establish the correct diagnosis in neonates with cardiac hypertrophy which has both prognostic and therapeutic consequences. In addition, CH should be recognized as a potential comorbidity which might necessitate treatment in all neonates with known hyperinsulinism.What is Known:• Hyperinsulinism is currently not acknowledged as a cause of hypertrophic cardiomyopathy (HCM) in textbooks and recent Pediatric Cardiomyopathy Registry publications.What is New:• This article presents an overview of the literature of hyperinsulinism in neonates and infants showing that hyperinsulinism is associated with cardiac hypertrophy (CH) in a broad range of hyperinsulinemic diseases.• As CH cannot be distinguished from HCM on echocardiographic examination, we emphasize the importance to consider hyperinsulinism in the differential diagnosis of HCM/CH as establishing the correct diagnosis has both prognostic and therapeutic consequences

    Neonatal cardiac hypertrophy : the role of hyperinsulinism—a review of literature

    No full text
    Hypertrophic cardiomyopathy (HCM) in neonates is a rare and heterogeneous disorder which is characterized by hypertrophy of heart with histological and functional disruption of the myocardial structure/composition. The prognosis of HCM depends on the underlying diagnosis. In this review, we emphasize the importance to consider hyperinsulinism in the differential diagnosis of HCM, as hyperinsulinism is widely associated with cardiac hypertrophy (CH) which cannot be distinguished from HCM on echocardiographic examination. We supply an overview of the incidence and treatment strategies of neonatal CH in a broad spectrum of hyperinsulinemic diseases. Reviewing the literature, we found that CH is reported in 13 to 44% of infants of diabetic mothers, in approximately 40% of infants with congenital hyperinsulinism, in 61% of infants with leprechaunism and in 48 to 61% of the patients with congenital generalized lipodystrophy. The correct diagnosis is of importance since there is a large variation in prognoses and there are various strategies to treat CH in hyperinsulinemic diseases. Conclusion: The relationship between CH and hyperinsulism has implications for clinical practice as it might help to establish the correct diagnosis in neonates with cardiac hypertrophy which has both prognostic and therapeutic consequences. In addition, CH should be recognized as a potential comorbidity which might necessitate treatment in all neonates with known hyperinsulinism.What is Known:• Hyperinsulinism is currently not acknowledged as a cause of hypertrophic cardiomyopathy (HCM) in textbooks and recent Pediatric Cardiomyopathy Registry publications.What is New:• This article presents an overview of the literature of hyperinsulinism in neonates and infants showing that hyperinsulinism is associated with cardiac hypertrophy (CH) in a broad range of hyperinsulinemic diseases.• As CH cannot be distinguished from HCM on echocardiographic examination, we emphasize the importance to consider hyperinsulinism in the differential diagnosis of HCM/CH as establishing the correct diagnosis has both prognostic and therapeutic consequences

    Elevated renal tissue oxygenation in premature fetal growth restricted neonates : An observational study

    No full text
    BACKGROUND: Fetal growth restriction (FGR) is associated with an increased risk for kidney disease in later life. Studies reporting on early signs of renal disturbances in FGR are sparse and mostly include invasive measurements, which limit the possibility for early identification and prevention. We aim to investigate whether renal tissue oxygen saturation (rSO2) measured with near-infrared spectroscopy (NIRS) and the derived value fractional tissue oxygen extraction (FTOE) differ between premature FGR and control neonates in the first three days after birth. METHODS: Nine FGR and seven control neonates born <32 weeks of gestation were included. FGR was defined as biometry <p10 combined with prenatal signs of placental insufficiency. Renal rSO2 was measured continuously with NIRS for 72 hours. FTOE was calculated as: (arterial saturation-rSO2)/arterial saturation. Renal artery blood flow (pulsatility and resistance index) was measured within 24 hours after birth. A linear mixed model approach was used (intercept ± slope = r) to analyze the NIRS parameters. RESULTS: Renal rSO2 was higher in FGR neonates compared to controls (94% vs. 83%; pgroup = 0.002). During the first three days after birth, renal rSO2 decreased in FGR neonates and increased in controls (r = -0.25 vs. r = 0.03; pinteraction = 0.001). Renal FTOE was lower in FGR neonates (0.02 vs. 0.14; pgroup = 0.01) and increased slightly during three days after birth, while it remained stable in controls (r = 0.003 vs. r = -0.0001; pinteraction = 0.001). Renal artery blood flow was similar between groups. CONCLUSIONS: FGR neonate kidneys showed higher rSO2 as measured with NIRS and lower derived values of FTOE in the first three days after birth. We speculate that this was caused by either a reduced oxygen consumption due to impaired renal maturation or increased renal oxygen supply. How these observations correlate with short- and long-term renal function needs further investigation before renal NIRS can be implemented in screening and prevention in clinical practice
    corecore