1,858 research outputs found
Odd-skipped genes specify the signaling center that triggers retinogenesis in Drosophila
5 páginas, 4 figuras.Although many of the factors responsible for conferring identity to the eye field in Drosophila have been identified, much less is known about how the expression of the retinal `trigger', the signaling molecule Hedgehog, is controlled. Here, we show that the co-expression of the conserved odd-skipped family genes at the posterior margin of the eye field is required to activate hedgehog expression and thereby the onset of retinogenesis. The fly Wnt1 homologue wingless represses the odd-skipped genes drm and odd along the anterior margin and, in this manner, spatially restricts the extent of retinal differentiation within the eye field.This work has been funded through grants BMC2003-06248 (Ministerio de Educación y Ciencia, Spain) and POCTI/BIA-BCM/56043/2004 [Fundação para a Ciência e a Tecnologia (FCT), Portugal], which are co-funded by FEDER, to F.C. C.B-P. and J.B. are funded by FCT.Peer reviewe
Nuclear Mass Dependence of Chaotic Dynamics in Ginocchio Model
The chaotic dynamics in nuclear collective motion is studied in the framework
of a schematic shell model which has only monopole and quadrupole degrees of
freedom. The model is shown to reproduce the experimentally observed global
trend toward less chaotic motion in heavier nuclei. The relation between
current approach and the earlier studies with bosonic models is discussed.Comment: 11 Page REVTeX file, 2 postscript figures, uuencode
Deformed Gaussian Orthogonal Ensemble Analysis of the Interacting Boson Model
A Deformed Gaussian Orthogonal Ensemble (DGOE) which interpolates between the
Gaussian Orthogonal Ensemble and a Poissonian Ensemble is constructed. This new
ensemble is then applied to the analysis of the chaotic properties of the low
lying collective states of nuclei described by the Interacting Boson Model
(IBM). This model undergoes a transition order-chaos-order from the
limit to the limit. Our analysis shows that the quantum fluctuations of
the IBM Hamiltonian, both of the spectrum and the eigenvectors, follow the
expected behaviour predicted by the DGOE when one goes from one limit to the
other.Comment: 10 pages, 4 figures (avaiable upon request), IFUSP/P-1086 Replaced
version: in the previous version the name of one of the authors was omitte
Misleading signatures of quantum chaos
The main signature of chaos in a quantum system is provided by spectral
statistical analysis of the nearest neighbor spacing distribution and the
spectral rigidity given by . It is shown that some standard
unfolding procedures, like local unfolding and Gaussian broadening, lead to a
spurious increase of the spectral rigidity that spoils the
relationship with the regular or chaotic motion of the system. This effect can
also be misinterpreted as Berry's saturation.Comment: 4 pages, 5 figures, submitted to Physical Review
Universal Predictions for Statistical Nuclear Correlations
We explore the behavior of collective nuclear excitations under a
multi-parameter deformation of the Hamiltonian. The Hamiltonian matrix elements
have the form , with a
parametric correlation of the type . The studies are done in both the regular and chaotic regimes of the
Hamiltonian. Model independent predictions for a wide variety of correlation
functions and distributions which depend on wavefunctions and energies are
found from parametric random matrix theory and are compared to the nuclear
excitations. We find that our universal predictions are observed in the nuclear
states. Being a multi-parameter theory, we consider general paths in parameter
space and find that universality can be effected by the topology of the
parameter space. Specifically, Berry's phase can modify short distance
correlations, breaking certain universal predictions.Comment: Latex file + 12 postscript figure
Boson-conserving one-nucleon transfer operator in the interacting boson model
The boson-conserving one-nucleon transfer operator in the interacting boson
model (IBA) is reanalyzed. Extra terms are added to the usual form used for
that operator. These new terms change generalized seniority by one unit, as the
ones considered up to now. The results obtained using the new form for the
transfer operator are compared with those obtained with the traditional form in
a simple case involving the pseudo-spin Bose-Fermi symmetry in its limit. Sizeable differences are
found. These results are of relevance in the study of transfer reactions to
check nuclear supersymmetry and in the description of (\beta)-decay within IBA.Comment: 13 pages, 1 table, 0 figures. To be published in Phys. Rev.
Energy Level Statistics of the U(5) and O(6) Symmetries in the Interacting Boson Model
We study the energy level statistics of the states in U(5) and O(6) dynamical
symmetries of the interacting boson model and the high spin states with
backbending in U(5) symmetry. In the calculations, the degeneracy resulting
from the additional quantum number is eliminated manually. The calculated
results indicate that the finite boson number effect is prominent. When
has a value close to a realistic one, increasing the interaction strength of
subgroup O(5) makes the statistics vary from Poisson-type to GOE-type and
further recover to Poisson-type. However, in the case of , they
all tend to be Poisson-type. The fluctuation property of the energy levels with
backbending in high spin states in U(5) symmetry involves a signal of shape
phase transition between spherical vibration and axial rotation.Comment: 38 pages, 13 figure
Isoscalar dipole coherence at low energies and forbidden E1 strength
In 16O and 40Ca an isoscalar, low-energy dipole transition (IS-LED)
exhausting approximately 4% of the isoscalar dipole (ISD) energy-weighted sum
rule is experimentally known, but conspicuously absent from recent theoretical
investigations of ISD strength. The IS-LED mode coincides with the so-called
isospin-forbidden E1 transition. We report that for N=Z nuclei up to 100Sn the
fully self-consistent Random-Phase-Approximation with finite-range forces,
phenomenological and realistic, yields a collective IS-LED mode, typically
overestimating its excitation energy, but correctly describing its IS strength
and electroexcitation form factor. The presence of E1 strength is solely due to
the Coulomb interaction between the protons and the resulting isospin-symmetry
breaking. The smallness of its value is related to the form of the transition
density, due to translational invariance. The calculated values of E1 and ISD
strength carried by the IS-LED depend on the effective interaction used.
Attention is drawn to the possibility that in N-not-equal-Z nuclei this
distinct mode of IS surface vibration can develop as such or mix strongly with
skin modes and thus influence the pygmy dipole strength as well as the ISD
strength function. In general, theoretical models currently in use may be unfit
to predict its precise position and strength, if at all its existence.Comment: 9 pages, 6 figures, EPJA submitte
A Transport and Microwave Study of Superconducting and Magnetic RuSr2EuCu2O8
We have performed susceptibility, thermopower, dc resistance and microwave
measurements on RuSr2EuCu2O8. This compound has recently been shown to display
the coexistence of both superconducting and magnetic order. We find clear
evidence of changes in the dc and microwave resistance near the magnetic
ordering temperature (132 K). The intergranular effects were separated from the
intragranular effects by performing microwave measurements on a sintered
ceramic sample as well as on a powder sample dispersed in an epoxy resin. We
show that the data can be interpreted in terms of the normal-state resistivity
being dominated by the CuO2 layers with exchange coupling to the Ru moments in
the RuO2 layers. Furthermore, most of the normal-state semiconductor-like
upturn in the microwave resistance is found to arise from intergranular
transport. The data in the superconducting state can be consistently
interpreted in terms of intergranular weak-links and an intragranular
spontaneous vortex phase due to the ferromagnetic component of the
magnetization arising from the RuO2 planes.Comment: 20 pages including 6 figures in pdf format. To be published in Phys.
Rev.
Superallowed Fermi transitions in RPA with a relativistic point-coupling energy functional
The self-consistent random phase approximation (RPA) approach with the
residual interaction derived from a relativistic point-coupling energy
functional is applied to evaluate the isospin symmetry-breaking corrections
{\delta}c for the 0+\to0+ superallowed Fermi transitions. With these {\delta}c
values, together with the available experimental ft values and the improved
radiative corrections, the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix is examined. Even with the consideration of uncertainty, the sum of
squared top-row elements has been shown to deviate from the unitarity condition
by 0.1% for all the employed relativistic energy functionals.Comment: 13 pages,2 figure
- …