98 research outputs found

    Analysis of the interaction between human kidney anion exchanger 1 and kanadaptin using yeast two-hybrid systems

    Get PDF
    Abstract Kidney anion exchanger adaptor protein (Kanadaptin) is a protein which interacts with the cytoplasmic N-terminal domain of kidney anion exchanger 1 (kAE1) and was first detected in mice using the yeast two-hybrid system and was also found to co-localize with kAE1 in rabbit a-intercalated cells. Impaired trafficking of human kAE1 can result in the kidney disease-distal renal tubular acidosis (dRTA), and defective interaction between human kAE1 and kanadaptin may cause this trafficking impairment and be the basis for dRTA pathogenesis. However, it is unknown whether kAE1 can really interact with kanadaptin in humans. We have thus investigated the interaction between human kAE1 and human kanadaptin by using both Gal4 and LexA yeast two-hybrid systems. It was found that co-expression of Gal4DBD fused to the cytoplasmic N-terminal domain of kAE1 and Gal4AD fused to kanadaptin could not activate the transcription of the ADE2, HIS3 and lacZ reporters in the Gal4 system. A similar result was obtained for the interaction between B42AD fused to the cytoplasmic N-terminal domain of kAE1 and LexA fused to kanadaptin in activation of lacZ transcription in the LexA system. The absence of interaction between the fusion proteins in both yeast two-hybrid systems raises the possibility that kAE1 may not interact with kanadaptin in human cells. Considerably different structures of both kAE1 and kanadaptin in mice and humans may lead to different binding properties of the proteins in these two species

    Cellular localization of nucleolin determines the prognosis in cancers: a meta-analysis

    Get PDF
    Nucleolin (NCL) is a multifunctional protein expressed in the nucleus, cytoplasm, and cell membrane. Overexpression of NCL has a controversial role as a poor prognostic marker in cancers. In this study, a meta-analysis was performed to evaluate the prognostic value of NCL in different subcellular localizations (cytoplasmic (CyNCL) and nuclear (NuNCL)) across a range of cancers. PubMed was searched for relevant publications. Data were extracted and analyzed from 12 studies involving 1221 patients with eight cancer types. The results revealed high total NCL was significantly associated with poor overall survival (OS) (HR = 2.85 (1.94, 4.91), p < 0.00001, I2 = 59%) and short disease-free survival (DFS) (HR = 3.57 (2.76, 4.62), p < 0.00001, I2 = 2%). High CyNCL was significantly associated with poor OS (HR = 4.32 (3.01, 6.19), p < 0.00001, I2 = 0%) and short DFS (HR = 3.00 (2.17, 4.15), p < 0.00001, I2 = 0%). In contrast, high NuNCL correlated with increased patient OS (HR = 0.42 (0.20, 0.86), p = 0.02, I2 = 66%), with no significant correlation to DFS observed (HR = 0.46 (0.19, 1.14), p = 0.09, I2 = 57%). This study supports the role of subcellular NCL as a poor prognostic cancer biomarker

    Novel Adiponectin Variants Identified in Type 2 Diabetic Patients Reveal Multimerization and Secretion Defects

    Get PDF
    ADIPOQ, encoding adiponectin, is a candidate gene for type 2 diabetes (T2D) identified by genome-wide linkage analyses with supporting evidence showing the protein function in sensitizing insulin actions. In an endeavor to characterize candidate genes causing T2D in Thai patients, we identified 10 novel ADIPOQ variations, several of which were non-synonymous variations observed only in the patients. To examine the impact of these non-synonymous variations on adiponectin structure and biochemical characteristics, we conducted a structural analysis of the wild-type and variant proteins by in silico modeling and further characterized biochemical properties of the variants with predicted structural abnormalities from the modeling by molecular and biochemical studies. The recombinant plasmids containing wild-type and variant ADIPOQ cDNAs derived from the variations identified by our study (R55H, R112H, and R131H) and previous work (G90S and R112C) were constructed and transiently expressed and co-expressed in cultured HEK293T cells to investigate their oligomerization, interaction, and secretion. We found that the novel R55H variant impaired protein multimerization but it did not exert the effect over the co-expressed wild-type protein while novel R131H variant impaired protein secretion and also affected the co-expressed wild-type protein in a dominant negative fashion. The R131H variant could traffic from the endoplasmic reticulum to the Golgi, trans-Golgi network, and early endosome but could not be secreted. The R131H variant was likely to be degraded through the lysosomal system and inhibition of its degradation rescued the variant protein from secretion defect. We have shown the possibility of using in silico modeling for predicting the effect of amino acid substitution on adiponectin oligomerization. This is also the first report that demonstrates a dominant negative effect of the R131H variant on protein secretion and the possibility of using protein degradation inhibitors as therapeutic agents in the patients carrying adiponectin variants with secretion defect

    Cytotoxicity of fourth-generation anti-Trop2 CAR-T cells against breast cancer

    Get PDF
    The treatment of breast cancer (BC) remains a formidable challenge due to the emergence of drug resistance, necessitating the exploration of innovative strategies. Chimeric antigen receptor (CAR)-T cell therapy, a groundbreaking approach in hematologic malignancies, is actively under investigation for its potential application in solid tumors, including BC. Trophoblast cell surface antigen 2 (Trop2) has emerged as a promising immunotherapeutic target in various cancers and is notably overexpressed in BC. To enhance therapeutic efficacy in BC, a fourth-generation CAR (CAR4) construct was developed. This CAR4 design incorporates an anti-Trop2 single-chain variable fragment (scFv) fused with three costimulatory domains –CD28/4-1BB/CD27, and CD3ΞΆ. Comparative analysis with the conventional second-generation CAR (CAR2; 28ΞΆ) revealed that anti-Trop2 CAR4 T cells exhibited heightened cytotoxicity and interferon-gamma (IFN-Ξ³) production against Trop2-expressing MCF-7 cells. Notably, anti-Trop2 CAR4-T cells demonstrated superior long-term cytotoxic functionality and proliferative capacity. Crucially, anti-Trop2 CAR4-T cells displayed specific cytotoxicity against Trop2-positive BC cells (MDA-MB-231, HCC70, and MCF-7) in both two-dimensional (2D) and three-dimensional (3D) culture systems. Following antigen-specific killing, these cells markedly secreted interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-Ξ±), IFN-Ξ³, and Granzyme B compared to non-transduced T cells. This study highlights the therapeutic potential of anti-Trop2 CAR4-T cells in adoptive T cell therapy for BC, offering significant promise for the advancement of BC treatment strategies
    • …
    corecore