18 research outputs found

    Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells

    Get PDF
    Influenza A virus (IAV) poses global threats to human health. Acute respiratory distress syndrome and multi-organ dysfunction are major complications in patients with severe influenza infection. This may be explained by the recent studies which highlighted the role of the pulmonary endothelium as the center of innate immune cells recruitment and excessive pro-inflammatory cytokines production. In this report, we examined the potential immunomodulatory effects of two indirubin derivatives, indirubin-3'-(2,3-dihydroxypropyl)-oximether (E804) and indirubin-3'-oxime (E231), on IAV (H9N2) infected-human pulmonary microvascular endothelial cells (HPMECs). Infection of H9N2 on HPMECs induced a high level of chemokines and cytokines production including IP-10, RANTES, IL-6, IFN-β and IFN-γ1. Post-treatment of E804 or E231 could significantly suppress the production of these cytokines. H9N2 infection rapidly triggered the activation of innate immunity through phosphorylation of signaling molecules including mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT) proteins. Using specific inhibitors or small-interfering RNA, we confirmed that indirubin derivatives can suppress H9N2-induced cytokines production through MAPKs and STAT3 signaling pathways. These results underscore the immunomodulatory effects of indirubin derivatives on pulmonary endothelium and its therapeutic potential on IAV-infection.published_or_final_versio

    Angiogenesis: from plants to blood vessels

    Full text link
    Angiogenesis is a major pathological component of diseases such as cancer and coronary heart disease. Although major advances have been made and encouraging clinical results obtained, safer and more effective approaches are required. The identification of new drugs from plants has a long and successful history, and certain proangiogenic and antiangiogenic plant components have been used in traditional Chinese medicine (TCM) for thousands of years. Similar to Western combination therapy, TCM uses mixtures of plant extracts, termed fufang, to maximize efficacy and minimize adverse effects or toxicity. More evidence-based research and chemical optimization of these compounds could further enhance the effectiveness of these plant-based medicines in angiotherapy. © 2006 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex

    Dual functions of ginsenosides in protecting human endothelial cells against influenza H9N2-induced inflammation and apoptosis

    Full text link
    Ethnopharmacological relevance: Panax ginseng is a precious traditional Chinese herbal medicine which has been utilized as herbal tonic for improving immunity. The active component, ginsenosides have been shown to possess various pharmacological functions including immunomodulation and cardiovascular protection. Aim of the study: To investigate the immunomodulatory effect and anti-apoptotic effect of ginsenosides on avian influenza-infected human endothelial cells, and to present evidence for the cardiovascular protection by ginseng during influenza infection. Materials and methods: Human umbilical vein endothelial cells (HUVECs) were infected with avian influenza H9N2/G1 to induce IP-10 production and cell death, cells were then incubated with ginsenosides PPT and Re. The level of IP-10 and microRNA was determined by ELISA and real-time PCR respectively. Cell death was determined by MTT, TUNEL and flow cytometry. Results: Ginsenoside metabolite protopanaxatriol showed significant suppression effect on IP-10 production upon H9N2/G1 infection through up-regulation of miR-15b expression. In addition, ginsenoside-induced cytoprotection was reflected in the increase of cell viability. Data from flow cytometry analysis and TUNEL assay also showed that ginsenoside Re could protect ECs from H9N2/G1-induced apoptosis and DNA damage. Conclusions: This report further supports the traditional belief for immunomodulatory effects of ginseng, also demonstrated the partial protective mechanism of ginsenosides on avian influenza infection and its related endothelial dysfunction. © 2011 Elsevier Ireland Ltd. All rights reserved.link_to_subscribed_fulltex

    Involvement of protein kinase C and E2F-5 in euxanthone-induced neurite differentiation of neuroblastoma

    Full text link
    Euxanthone, a neuritogenic agent isolated from the medicinal herb Polygala caudata, has been shown to induce morphological differentiation and neurite outgrowth in murine neuroblastoma Neuro 2a cells (BU-1 subclone). In order to elucidate the underlying mechanisms of euxanthone-induced neurite outgrowth, a proteomic approach was employed. In the present study, two dimensional (2-D) gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-ToF) mass spectrometry were performed to investigate the alterations in protein expression profile of euxanthone-treated BU-1 cells. Fourteen identified proteins were changed in expression levels after induction of neurite growth. These proteins included participants in transcription and cell cycle regulation, calcium influx and calcium signaling, fatty acid metabolism, cytoskeleton reorganization, casein kinase signal transduction, putative transbilayer amphipath transport and protein biosynthesis. Among the 14 identified proteins, E2F transcription factor 5 (E2F-5) was significantly up-regulated after euxanthone treatment. Go6976, a protein kinase C (PKC) α/βI inhibitor, was found to inhibit neuritogenesis and expression of E2F-5 in the euxanthone-treated BU-1 cells, while SH-6, the Akt/PKB inhibitor, had no inhibitory effect. The gene silencing of E2F-5 by small interfering RNA (siRNA) was found to abolish the euxanthone-induced neurite outgrowth. In conclusion, these results indicated that the transcription factor E2F-5 was actively involved in the regulation of euxanthone-induced neurite outgrowth via PKC pathway. © 2006 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex

    Simultaneous detection of precore/basal core promoter mutations in hepatitis B virus using arrayed primer extension

    Full text link
    Background: Hepatitis B is a major disease that causes serious public health problems worldwide. The loss of HBeAg expression due to point mutations or single nucleotide polymorphisms (SNPs) in the precore/basal core promoter region of the hepatitis B virus (HBV) is associated with hepatocellular cirrhosis and carcinoma. Simultaneous screening for these mutations is strongly advocated for monitoring disease development in HBV-infected patients. The aim of this study is to apply arrayed primer extension (APEX) for the detection of HBV SNPs at the precore/basal core promoter. Methods and results: We optimized APEX for simultaneous detection of eight potential sites of SNPs in the precore/basal core promoter region of HBV. The precore/basal core promoter regions of HBV from 36 HBV-infected patients were amplified by PCR. After purification and DNA fragmentation, the short, single-stranded HBV DNA fragments were allowed to hybridize with the oligonucleotides corresponding to the sites of SNPs immobilized on glass slides, followed by incorporation of different fluorescently labeled dideoxynucleotides. This allows fast and unequivocal discrimination between wild-type and mutant genotypes with high dideoxynucleotide incorporation efficiency, sensitivity, and specificity. The coexistence of both genotypes was also detected; this was undetected by DNA sequencing. Conclusion: The simultaneous detection of SNPs in HBV precore/basal core promoter by APEX enables large-scale diagnostic analysis, which can be extended to the whole HBV genome. © 2006 Adis Data Information BV. All rights reserved.link_to_subscribed_fulltex

    Angiomodulatory and neurological effects of ginsenosides

    Full text link
    Panax ginseng C.A. Meyer, one of the most popular and valued herbs, has been used extensively in traditional Chinese medicine for thousands of years. More than thirty ginsenosides, the pharmacologically active ingredients in ginseng, have been identified with various sugar moieties attached at the C-3, C-6 and C-20 positions of the steroidal skeleton. We herein review the current literature on the pharmacological effects of ginsenosides on the modulation of angiogenesis, dysregulations of which contribute towards many pathological conditions. Regarding the adaptogenic property of ginseng, the effects of ginsenosides on central nervous system are also discussed. Recent researches have pointed to the steroid hormone receptors as the target molecules to elicit the diverse cellular and physiological activities of ginseng. We believe that understanding the interaction between ginsenosides and various steroid hormone receptors may provide clues to unravel the secret of ginseng. © 2007 Bentham Science Publishers Ltd.link_to_subscribed_fulltex

    Isolation and characterization of ZK002, a novel dual function snake venom protein from Deinagkistrodon acutus with anti-angiogenic and anti-inflammatory properties

    Full text link
    202410 bcchVersion of RecordOthersInnovation and Technology Fund; Hong Kong Polytechnic UniversityPublishedC

    The angiogenic effects of Angelica sinensis extract on HUVEC in vitro and zebrafish in vivo

    Full text link
    Angiogenesis plays an important role in a wide range of physiological processes such as wound healing and fetal development. Many diseases are associated with imbalances in regulation of angiogenesis, in which it is either excessive or there is insufficient blood vessel formation. Angelica sinensis (AS), commonly used in the prescriptions of Chinese medicine, is a potential candidate for curing such diseases. However, biological effects of AS on angiogenesis and underlying mechanisms are yet to be fully elucidated. This investigation describes the angiogenic effects of AS extract on human endothelial cells (HUVEC) in vitro and zebrafish in vivo. The extract was demonstrated, by XTT assay and microscopic cell counting, to stimulate the proliferation of HUVEC; in addition, flow cytometry analysis indicated that the extract increased the percentage of HUVEC in the S phase. The wound healing migration assay illustrated that a dramatic increase in migration could be measured in AS extract-treated HUVEC. Meanwhile, the number of invaded cells and the mean tube length were significantly increased in AS extract treatment groups. The extract was also demonstrated to promote changes in subintestinal vessels (SIVs) in zebrafish, one feature of angiogenesis. In addition, AS extract was found by real-time PCR to enhance vascular endothelial growth factor (VEGF) mRNA expression. In a bead-based immunoassay, higher levels of p38 and JN K1/2 expression were also observed in effusions compared with control cells. All results suggest that Angelica sinensis extract can promote angiogenesis, and that the angiogenic effects involve p38 and JNK 1/2 phosphorylation. © 2007 Wiley-Liss, Inc.link_to_subscribed_fulltex
    corecore