77 research outputs found

    Wavefield characteristics and spatial incoherency - a comparative study from Argostoli rock- and soil-site dense seismic arrays

    Get PDF
    International audienceThe current article presents the results from the analysis of the seismic events recorded from a dense array located on a rock site at Argostoli, Cephalonia Island, Greece. The objective of the study is to explore to what extent the non-direct, diffracted surface waves influence the seismic wavefield at a rock site, to investigate the loss of coherency of ground motions and to compare the results with those from a previously studied similar array located at an adjacent small, shallow sedimentary valley. The array consists of 21 velocimeters encompassing a central station in four concentric circles with diameters 20, 60, 180 and 360 m. The analyzed seismic dataset includes 40 events with magnitudes ranging from 2 to 5 and epicentral distance up to 200 km. MUSIQUE algorithm has been used to analyze the seismic wavefield by extracting the backazimuth and slowness of the dominant incoming waves and identifying the Love and Rayleigh waves. Lagged coherency has been estimated for all the available station pairs in the array and the results from the entire dataset have been averaged at four separation distance intervals, 10-20, 20-30, 30-40, 80-90 m. The results were also compared with those from a similar array located on an adjacent small, shallow sedimentary valley. The analysis suggests that about 20percent energy of the wavefield could be characterized as diffracted Love and Rayleigh waves, primarily arriving from the north-east and north-south directions, respectively. The spatial coherency estimations at the rock site are, generally, observed to be larger than those from the sedimentary array, especially at frequencies below 5 Hz. The directionality of coherency estimates observed from the soil array is absent in case of the rock array data. Comparison with the widely-quoted parametric models reveals that there is little correlation between the decay of coherency observed at the rock site and the models. The significant difference observed between the results of the rock and soil array indicate that the spatial incoherency is largely site dependent and could be potentially associated with the formation of locally generated wavefiel

    The NeuARt II system: a viewing tool for neuroanatomical data based on published neuroanatomical atlases

    Get PDF
    BACKGROUND: Anatomical studies of neural circuitry describing the basic wiring diagram of the brain produce intrinsically spatial, highly complex data of great value to the neuroscience community. Published neuroanatomical atlases provide a spatial framework for these studies. We have built an informatics framework based on these atlases for the representation of neuroanatomical knowledge. This framework not only captures current methods of anatomical data acquisition and analysis, it allows these studies to be collated, compared and synthesized within a single system. RESULTS: We have developed an atlas-viewing application ('NeuARt II') in the Java language with unique functional properties. These include the ability to use copyrighted atlases as templates within which users may view, save and retrieve data-maps and annotate them with volumetric delineations. NeuARt II also permits users to view multiple levels on multiple atlases at once. Each data-map in this system is simply a stack of vector images with one image per atlas level, so any set of accurate drawings made onto a supported atlas (in vector graphics format) could be uploaded into NeuARt II. Presently the database is populated with a corpus of high-quality neuroanatomical data from the laboratory of Dr Larry Swanson (consisting 64 highly-detailed maps of PHAL tract-tracing experiments, made up of 1039 separate drawings that were published in 27 primary research publications over 17 years). Herein we take selective examples from these data to demonstrate the features of NeuArt II. Our informatics tool permits users to browse, query and compare these maps. The NeuARt II tool operates within a bioinformatics knowledge management platform (called 'NeuroScholar') either as a standalone or a plug-in application. CONCLUSION: Anatomical localization is fundamental to neuroscientific work and atlases provide an easily-understood framework that is widely used by neuroanatomists and non-neuroanatomists alike. NeuARt II, the neuroinformatics tool presented here, provides an accurate and powerful way of representing neuroanatomical data in the context of commonly-used brain atlases for visualization, comparison and analysis. Furthermore, it provides a framework that supports the delivery and manipulation of mapped data either as a standalone system or as a component in a larger knowledge management system

    From Retinal Waves to Activity-Dependent Retinogeniculate Map Development

    Get PDF
    A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca2+-activated K+ channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops
    corecore