207 research outputs found

    The fitness consequences of inbreeding in natural populations and their implications for species conservation – a systematic map

    Get PDF
    Background: Threatened species often have small and isolated populations where mating among relatives can result in inbreeding depression increasing extinction risk. Effective management is hampered by a lack of syntheses summarising the magnitude of, and variation in inbreeding depression. Here we describe the nature and scope of the literature examining phenotypic/fitness consequences of inbreeding, to provide a foundation for future syntheses and management. Methods: We searched the literature for articles documenting the impact of inbreeding in natural populations. Article titles, abstracts and full-texts were assessed against a priori defined criteria, and information relating to study design, quality and other factors that may influence inbreeding responses (e.g. population size) was extracted from relevant articles. Results: The searches identified 11457 articles, of which 614 were assessed as relevant and included in the systematic map (corresponding to 703 distinct studies). Most studies (663) assessed within-population inbreeding resulting from self-fertilisation or consanguineous pairings, while 118 studies assessed among-population inbreeding due to drift load. Plants were the most studied taxon (469 studies) followed by insects (52 studies) and birds (43 studies). Most studies investigated the effects of inbreeding on components of fitness (e.g. survival or fecundity; 648 studies) but measurements were typically under laboratory/greenhouse conditions (486 studies). Observations were also often restricted to the first inbred generation (607 studies) and studies frequently lacked contextual information (e.g. population size). Conclusions: Our systematic map describes the scope and quality of the evidence describing the phenotypic consequences of inbreeding. The map reveals substantial evidence relating to inbreeding responses exists, but highlights information is still limited for some aspects, including the effects of multiple generations of inbreeding. The systematic map allowed us to define several conservation-relevant questions, where sufficient data exists to support systematic reviews, e.g. How do inbreeding responses vary with population size? However, we found that such syntheses are likely to be constrained by incomplete reporting of critical contextual information. Our systematic map employed the same rigorous literature assessment methods as systematic review, including a novel survey of study quality and thus provides a robust foundation to guide future research and syntheses seeking to inform conservation decision-making

    The Genetic Signature of Sex-Biased Migration in Patrilocal Chimpanzees and Humans

    Get PDF
    A large body of theoretical work suggests that analyses of variation at the maternally inherited mitochondrial (mt)DNA and the paternally inherited non-recombining portion of the Y chromosome (NRY) are a potentially powerful way to reveal the differing migratory histories of men and women across human societies. However, the few empirical studies comparing mtDNA and NRY variation and known patterns of sex-biased migration have produced conflicting results. Here we review some methodological reasons for these inconsistencies, and take them into account to provide an unbiased characterization of mtDNA and NRY variation in chimpanzees, one of the few mammalian taxa where males routinely remain in and females typically disperse from their natal groups. We show that patterns of mtDNA and NRY variation are more strongly contrasting in patrilocal chimpanzees compared with patrilocal human societies. The chimpanzee data we present here thus provide a valuable comparative benchmark of the patterns of mtDNA and NRY variation to be expected in a society with extremely female-biased dispersal

    How adolescents who cut themselves differ from those who take overdoses

    Full text link
    The aims of this study were to identify in what ways adolescents who cut themselves differ from those who take overdoses, and to investigate the role of contagion in these behaviours. Data from an anonymous self-report questionnaire survey of 6,020 adolescents in 41 schools were analysed. Comparison of 220 adolescents who reported self-cutting in the previous year with 86 who had taken overdoses in the previous year as the sole method of deliberate self-harm (DSH) showed that far more of those who cut themselves had friends who had also engaged in DSH in the same period (OR 2.84, 95% CI 1.5–5.3, P < 0.001), and fewer had sought help from friends before cutting (OR 0.5, 95% CI 0.3–0.9, P < 0.02). Self-cutting usually involved less premeditation. Analyses at both the individual and school level showed that the association between engaging in DSH and exposure to DSH amongst peers was largely confined to girls who cut themselves. There are important differences between adolescents who cut themselves and those who take overdoses. Contagion may be an important factor in DSH by adolescents, especially in girls who cut themselves. These findings are relevant to the design of prevention and treatment programmes

    The Back 2 Activity Trial: education and advice versus education and advice plus a structured walking programme for chronic low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current evidence supports the use of exercise-based treatment for chronic low back pain that encourages the patient to assume an active role in their recovery. Walking has been shown it to be an acceptable type of exercise with a low risk of injury. However, it is not known whether structured physical activity programmes are any more effective than giving advice to remain active.</p> <p>Methods/Design</p> <p>The proposed study will test the feasibility of using a pedometer-driven walking programme, as an adjunct to a standard education and advice session in participants with chronic low back pain. Fifty adult participants will be recruited via a number of different sources. Baseline outcome measures including self reported function; objective physical activity levels; fear-avoidance beliefs and health-related quality of life will be recorded. Eligible participants will be randomly allocated under strict, double blind conditions to one of two treatments groups. Participants in group A will receive a single education and advice session with a physiotherapist based on the content of the 'Back Book'. Participants in group B will receive the same education and advice session. In addition, they will also receive a graded pedometer-driven walking programme prescribed by the physiotherapist. Follow up outcomes will be recorded by the same researcher, who will remain blinded to group allocation, at eight weeks and six months post randomisation. A qualitative exploration of participants' perception of walking will also be examined by use of focus groups at the end of the intervention. As a feasibility study, treatment effects will be represented by point estimates and confidence intervals. The assessment of participant satisfaction will be tabulated, as will adherence levels and any recorded difficulties or adverse events experienced by the participants or therapists. This information will be used to modify the planned interventions to be used in a larger randomised controlled trial.</p> <p>Discussion</p> <p>This paper describes the rationale and design of a study which will test the feasibility of using a structured, pedometer-driven walking programme in participants with chronic low back pain.</p> <p>Trial Registration</p> <p>[ISRCTN67030896]</p

    Find the weakest link. A comparison between demographic, genetic and demo-genetic metapopulation extinction times

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the ultimate causes of most species extinctions are environmental, environmental constraints have various secondary consequences on evolutionary and ecological processes. The roles of demographic, genetic mechanisms and their interactions in limiting the viabilities of species or populations have stirred much debate and remain difficult to evaluate in the absence of demography-genetics conceptual and technical framework. Here, I computed projected times to metapopulation extinction using (1) a model focusing on the effects of species properties, habitat quality, quantity and temporal variability on the time to demographic extinction; (2) a genetic model focusing on the dynamics of the drift and inbreeding loads under the same species and habitat constraints; (3) a demo-genetic model accounting for demographic-genetic processes and feedbacks.</p> <p>Results</p> <p>Results indicate that a given population may have a high demographic, but low genetic viability or vice versa; and whether genetic or demographic aspects will be the most limiting to overall viability depends on the constraints faced by the species (e.g., reduction of habitat quantity or quality). As a consequence, depending on metapopulation or species characteristics, incorporating genetic considerations to demographically-based viability assessments may either moderately or severely reduce the persistence time. On the other hand, purely genetically-based estimates of species viability may either underestimate (by neglecting demo-genetic interactions) or overestimate (by neglecting the demographic resilience) true viability.</p> <p>Conclusion</p> <p>Unbiased assessments of the viabilities of species may only be obtained by identifying and considering the most limiting processes (i.e., demography or genetics), or, preferentially, by integrating them.</p

    Multifaceted Population Structure and Reproductive Strategy in Leishmania donovani Complex in One Sudanese Village

    Get PDF
    Leishmania species of the subgenus Leishmania and especially L. donovani are responsible for a large proportion of visceral leishmaniasis cases. The debate on the mode of reproduction and population structure of Leishmania parasites remains opened. It has been suggested that Leishmania parasites could alternate different modes of reproduction, more particularly clonality and frequent recombinations either between related individuals (endogamy) or between unrelated individuals (outcrossing) within strongly isolated subpopulations. To determine whether this assumption is generalized to other species, a population genetics analysis within Leishmania donovani complex strains was conducted within a single village. The results suggest that a mixed-mating reproduction system exists, an important heterogeneity of subsamples and the coexistence of several genetic entities in Sudanese L. donovani. Indeed, results showed significant genetic differentiation between the three taxa (L. donovani, L. infantum and L. archibaldi) and between the human or canine strains of such taxa, suggesting that there may be different imbricated transmission cycles involving either dogs or humans. Results also are in agreement with an almost strict specificity of L. donovani stricto sensu to human hosts. This empirical study demonstrates the complexity of population structure in the genus Leishmania and the need to pursue such kind of analyses at the smallest possible spatio-temporal and ecological scales

    Accelerated inbreeding depression suggests synergistic epistasis for deleterious mutations in Drosophila melanogaster

    Get PDF
    Epistasis may have important consequences for a number of issues in quantitative genetics and evolutionary biology. In particular, synergistic epistasis for deleterious alleles is relevant to the mutation load paradox and the evolution of sex and recombination. Some studies have shown evidence of synergistic epistasis for spontaneous or induced deleterious mutations appearing in mutation-accumulation experiments. However, many newly arising mutations may not actually be segregating in natural populations because of the erasing action of natural selection. A demonstration of synergistic epistasis for naturally segregating alleles can be achieved by means of inbreeding depression studies, as deleterious recessive allelic effects are exposed in inbred lines. Nevertheless, evidence of epistasis from these studies is scarce and controversial. In this paper, we report the results of two independent inbreeding experiments carried out with two different populations of Drosophila melanogaster. The results show a consistent accelerated inbreeding depression for fitness, suggesting synergistic epistasis among deleterious alleles. We also performed computer simulations assuming different possible models of epistasis and mutational parameters for fitness, finding some of them to be compatible with the results observed. Our results suggest that synergistic epistasis for deleterious mutations not only occurs among newly arisen spontaneous or induced mutations, but also among segregating alleles in natural populationsWe acknowledge the support by Uvigo Marine Research Centre funded by the “Excellence in Research (INUGA)” Programme from the Regional Council of Culture, Education and Universities, with co-funding from the European Union through the ERDF Operational Programme Galicia 2014-2020. This work was funded by Agencia Estatal de Investigación (AEI) (CGL2016-75904-C2-1-P), Xunta de Galicia (ED431C 2016-037) and Fondos Feder: “Unha maneira de facer Europa.” SD was founded by a predoctoral (FPI) grant from Ministerio de Economía y Competitividad, SpainS

    Current and Historical Drivers of Landscape Genetic Structure Differ in Core and Peripheral Salamander Populations

    Get PDF
    With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in two core regions (Washington State, United States) versus the species' northern peripheral region (British Columbia, Canada) where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a ‘flat’ landscape), but at the periphery, topography (slope and elevation) had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management

    Low genotypic diversity and long-term ecological decline in a spatially structured seagrass population

    Get PDF
    In isolated or declining populations, viability may be compromised further by loss of genetic diversity. Therefore, it is important to understand the relationship between long-term ecological trajectories and population genetic structure. However, opportunities to combine these types of data are rare, especially in natural systems. Using an existing panel of 15 microsatellites, we estimated allelic diversity in seagrass, Zostera marina, at five sites around the Isles of Scilly Special Area of Conservation, UK, in 2010 and compared this to 23 years of annual ecological monitoring (1996–2018). We found low diversity and long-term declines in abundance in this relatively pristine but isolated location. Inclusion of the snapshot of genotypic, but less-so genetic, diversity improved prediction of abundance trajectories; however, this was spatial scale-dependent. Selection of the appropriate level of genetic organization and spatial scale for monitoring is, therefore, important to identify drivers of eco-evolutionary dynamics. This has implications for the use of population genetic information in conservation, management, and spatial planning

    Sex-Specific Genetic Structure and Social Organization in Central Asia: Insights from a Multi-Locus Study

    Get PDF
    In the last two decades, mitochondrial DNA (mtDNA) and the non-recombining portion of the Y chromosome (NRY) have been extensively used in order to measure the maternally and paternally inherited genetic structure of human populations, and to infer sex-specific demography and history. Most studies converge towards the notion that among populations, women are genetically less structured than men. This has been mainly explained by a higher migration rate of women, due to patrilocality, a tendency for men to stay in their birthplace while women move to their husband's house. Yet, since population differentiation depends upon the product of the effective number of individuals within each deme and the migration rate among demes, differences in male and female effective numbers and sex-biased dispersal have confounding effects on the comparison of genetic structure as measured by uniparentally inherited markers. In this study, we develop a new multi-locus approach to analyze jointly autosomal and X-linked markers in order to aid the understanding of sex-specific contributions to population differentiation. We show that in patrilineal herder groups of Central Asia, in contrast to bilineal agriculturalists, the effective number of women is higher than that of men. We interpret this result, which could not be obtained by the analysis of mtDNA and NRY alone, as the consequence of the social organization of patrilineal populations, in which genetically related men (but not women) tend to cluster together. This study suggests that differences in sex-specific migration rates may not be the only cause of contrasting male and female differentiation in humans, and that differences in effective numbers do matter
    corecore